Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

BCA (2011 & Onward)
B.Sc.(IT) (2015 Batch) (Sem.-1)
MATHEMATICS - I

Subject Code: BSIT/BSBC-103 Paper ID: [B1110]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Write briefly:

a) Find $(A \cap B) \cup C$ where :

$$A = \{1, 2, 3, 4,\}, B = \{2, 4, 6, 8\}, C = \{7, 9, 6, 8\}$$

- b) List the elements of the set B where $N = \{1, 2, 3, ...\}$ and $B = \{x \in N | x \text{ is even, } x < 11\}$
- c) Define a reflexive relation by giving suitable example.
- d) Find the number of relations from $A = \{3, 4, 6\}$ to $B = \{1, 2\}$.
- e) Find the truth table of $p \land \neg q$.
- f) Define the tautology proposition.
- g) Define and draw directed graph.
- h) Define and draw a tree.
- i) Define a recurrence relation.

j) If
$$A = \begin{bmatrix} 8 & 0 \\ 3 & 5 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 7 \\ -2 & 6 \\ 3 & 4 \end{bmatrix}$ find a matrix X such that $A - 5x = 2B$

SECTION-B

2. Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists. Find the number of students: (i) only on list A (ii) only on list B (iii) on exactly one list.

1 M-10045 (S3)-2133

3. Prove the following by the principle of mathematical induction:

$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

4. Define a Hamiltonian graph. Find a Hamiltonian path or a Hamiltonian circuit, if it exists in the following graph (Fig. 1)

Fig. 1

- 5. Find the Product matrix *BA* where $A = \begin{bmatrix} -2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 & 1 \\ 5 & 1 & 2 \\ 1 & -2 & 1 \end{bmatrix}$
- 6. a) Given $A = \{2, 3, 4, 6\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B:

$$R = \{(2, y), (2, z), (4, y), (6, x), (6, z)\}$$

- i) Draw the arrow diagram of R. (ii) Find the inverse relation of R.
- b) Consider the second-order homogeneous recurrence relation $a_n = 2a_{n-1} + a_{n-2}$ with initial conditions

 $a_0 = 1$, $a_1 = 2$. Find the next three terms of the sequence.

- 7 a) Determine whether the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction or not?
 - b) Consider the multigraphs 1, 2 and 3 in Fig. 2
 - 1) Which of them are connected?
 - 2) Which are cycle-free (without cycles)?
 - 3) Which are loop-free (without loops?
 - 4) Which are (simple) graphs?

B E

(3)

(2) **Fig. 2**