Roll No. \square

Total No. of Questions: 09
Total No. of Pages: 02
B. Tech. (ME) (Sem. 6)

STATISTICAL AND NUMERICAL METHODS IN ENGINEERING
Subject Code: BTME-604
Paper ID: A2364
Time: 03 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. Section A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. Section B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. Section C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

l.
a) The mean of five items of an observation is 4 and the variance is 5.2. If three of the items are 1.2 and 6 , then find the other two.
b) If the probability of a bad reaction from a certain injection is 0.001 . Determine the chances that out of 2,000 individuals more than two will get a bad reaction.
c) Explain rounding and truncation errors.
d) Differentiate bisection and Newton-Raphson methods.
e) Prove that if λ is an eigenvalue of a matrix A, then $1 / \lambda$ is an eigenvalue of A^{-1}.
f) Write Newton's-forward interpolation formula.
g) Explain normal sampling distributions.
h) What are finite-difference methods.
i) Write Newton-cots integration formula.
j) Explain partial and complete pivoting.

SECTION B

2. A set of five similar coins is tossed 320 times and the results:

No. of heads	0	1	2	3	4	5
Frequency	6	27	72	112	71	32

Test the hypothesis that the data follows a binomial distribution.
3. Determine the roots of $x^{4}+x^{3}-3 x^{2}-x+5$ which lies between 2 and 3 correct to three decimal places.
4. Find an approximate value of $\int_{1}^{2} \sqrt{\left(x-\frac{1}{x}\right)} d x$ by using (i) Trapezoidal rule, (ii) Simpson's $1 / 3$ rule and (iii) Simpson's $3 / 8$ rule.
5. Find the number of terms of the exponential series such that their sum gives the value of e^{x} correct to six decimal places at $x=1$.
6. Find the first and second order derivatives of the function $f(x)$ at the point $x=1.1$, if

x	1.0	1.2	1.5	1.6	1.8	2.0
$f(x)$	0.000	0.128	0.544	1.296	2.462	4.000

SECTION C

7. Apply Gauss-Seidal method to solve $5 x+2 y+z=12, x+4 y+2 z=15, x+2 y+5 z=20$ correct upto three decimal places using the initial approximations $x=y=z=0$.
8. Using modified Euler's method and Runge-Kutta method of order4, find $\mathrm{y}(0.2)$ for $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1 \quad$ (Take $h=0.1$).
9. In a distribution exactly normal, 7% of the items are under 35 and 79% are under 63 . What is the mean and standard deviation of the distribution?
