APPLIED MATHEMATICS-II $2{ }^{\text {nd }}$ Exam/Common/ 2354/ 2251/5422/ Nov'17

Duration: 3Hrs.

M.Marks:75

SECTION-A

Q1. Choose the correct answer.
i. Which one is a measure of dispersion?
a) M ean
b) Median
c) M ode
d) Range
ii. Order of differential equation $\left(y^{\prime \prime \prime}\right)^{2}+2 y^{\prime \prime}+3 y=x$
a) 1
b) 2
c) 3
d) 4
iii. A square matrix A is singular if $|A|$ is
a) 0
b) 1
c) 2
d) 3
iv. If $x=\sin 3 t$, then acceleration at $\frac{\pi}{2}$ is (x stands for displacement at time t)
a) -9
b) -3
c) 3
d) 9
v. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is
a) $x=0$
b) $y=0$
c) $x+y=0$
d) $x-y=0$

Q2. State True or False.

a. $\lim _{\theta \rightarrow 0} \frac{\sin \theta^{\circ}}{\theta}$ is equal to 1
b. $\int \sin 4 x d x=\cos 4 x$
c. If $\mathrm{D} \neq 0$, then system has unique solution
d. If the mean of $4,3,7, x, 10$ is 6 then $x=6$
e. The integral of $\log x$ w.r.t x is $\frac{1}{x}$

Q3. Fill in the blanks.

$5 \times 1=5$
i. $\int e^{m x} d x$ is equal to -------
ii. Area of trapezoid $=\frac{1}{2}$ (sum of parallel side) $x------$.
iii. If AB is defined then $(A B)^{t}=$
iv. Integration is defined as the ---- of differentiation.
v. The differential co-efficient of a constant is \qquad

SECTION-B

Q4. Attempt any six questions.
$6 \times 5=30$
(i) If $=a\left(t+\frac{1}{t}\right), y=a\left(t-\frac{1}{t}\right)$ where " a " is constant. Then prove that $\frac{d y}{d x}=\frac{x}{y}$
(ii) If $k x+y-z=0 ; x-2 y+z=3$ and $4 x-3 y+z=5$, and system is inconsistent, then find the value of k.
(iii) Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+\cot x}$
(iv) If $y=\left(\sin ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=2$
(v) Evaluate $\int \cos ^{4} x d x$
(vi) The probability of the horse A winning the race is $1 / 4$ and the probability of horse B winning the race is $1 / 3$, find the probability that one of the horse wins the race.
(vii) Calculate the median of the following data:-

Class Interval	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Frequency	12	15	25	40	42	14	8

(viii) Evaluate $\int x \tan ^{-1} x d x$
(ix) Find the point on the curve $y=10+2 x-x^{2}$ where the curve has slope unity.

SECTION-C

Q5. Attempt any three questions.
(i) Solve the following equations by matrix method
$x-y+z=4, \quad x-2 y-2 z=9,2 x+y+3 z=1$
(ii) Using Simpson's Rule, calculate the approximate value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by dividing the interval 0 to 1 into four equal parts. Hence obtain the value of π correct to four places of decimals.
(iii) Solve the differential equation

$$
y^{2}\left(x^{2}-1\right) \frac{d y}{d x}-x^{2}\left(y^{2}-1\right)=0
$$

(iv) a) Differentiate $e^{\tan x}$ w.r.t $\sin x$.
b) Determine the point of maxima of $f(x)=\sin x+\cos x$ in $0 \leq x \leq \frac{\pi}{2}$
(v) Find S.D and coefficient of variation of following data

M arks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	5	10	20	40	30	20	10	4

