Roll No. \square

B. Tech. (Sem. 2)
 ENGINEERING MATHEMATICS - II
 Subject Code: AM-102
 Paper ID: A0119

Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. Attempt all sub-questions from Question Sections A (2 Marks each)
2. Attempt any FIVE questions from Sections B and C, selecting at least 2 from each (8 Marks each)

SECTION A

1.

a) Suppose that a matrix A is both unitary and Hermitian. Then show that $\mathrm{A}=A^{-1}$.
b) Show that the eigenvalues of a skew-Hermitian matrix are either zero or purely imaginary numbers.
c) Find general solution of the Clairaut equation $y=x y^{\prime}-\left(y^{\prime}\right)^{3}$.
d) Find homogeneous linear differential equation with real constants coefficients of lowest order which has $x e^{-x}+e^{2 x}$ as a particular solution.
e) Find general solution of $4 x^{2} y^{\prime \prime}+8 y^{\prime}+17 y=0$.
f) Prove that $\operatorname{div}(f v)=f(\operatorname{div} v)+(\operatorname{grad} f) \bullet v$, where f is a scalar function.
g) State Fisher's z-test.
h) State Divergence Theorem of Gauss.
i) The continuous random variable X has probability density function ($p \mathrm{~d} f$)

$$
f(x)=\left\{\begin{array}{l}
\frac{x}{2}, 0<x<2 \\
0, \text { elsewhere }
\end{array} . \text { Find the } p d f \text { of } \mathrm{Y}=3 \mathrm{X}+2\right.
$$

j) Discuss χ^{2} test for goodness of fit.

SECTION B

2.

(i) State and prove Cayley Hamilton Theorem.
(ii) Check the system of linear equations given by $\left[\begin{array}{ccc}1 & -4 & 7 \\ 3 & 8 & -2 \\ 7 & -8 & 26\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}8 \\ 6 \\ 3\end{array}\right]$ is consistent or not. Consistent then find solution of the system.
3. If $\frac{\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)}{N}=f(x)$, a function of x alone then show that $e^{\int f(x) d x}$ is an integrating factor of $M(x, y) d x+N(x, y) d y=0$. Hence solve $\left(5 x^{3}+12 x^{2}+6 y^{2}\right) d x+6 x y d y=0$.
4. (i) Find the general solution of the equation $y^{\prime \prime}+16 y=32 \sec 2 x$, using the Method of Variation of Parameters.
(ii) Find the general solution of the equation $y^{\prime \prime}+16 y=16 \sin 4 x$, by the Method of Undetermined Coefficients.
5. An electric circuit consists of an inductance of 0.1 henry, a resistance of 20 ohms and a condenser of capacitance 25 micro-farads. Find the charge q and the current I at any time t, given that at $\mathrm{t}=0, \mathrm{q}=0.05$ coulomb, $\mathrm{i}=\frac{d q}{d t}=0$ when $\mathrm{t}=0$

SECTION C

6. (i) Evaluate the line integral of $v=x^{2} i-2 y j+z^{2} k$ over the straight line path from $(-1,2,3)$ to $(2,3,5)$.
(ii) Show that the vector field $F=2 x\left(y^{2}+z^{3}\right) i+2 x^{2} y j+3 x^{2} z^{2} k$ is conservative. Find its scalar potential and the work done in moving a particle from $(-1,2,1)$ to $(2,3,4)$.
7. Verify the Green's Theorem for $f(x, y)=e^{-x} \sin y, g(x, y)=e^{-x} \cos y$ and C is the square with vertices at $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2),(0, \pi / 2)$
8. Show that the Normal distribution is the limiting form of Binomial distribution.
9. The annual rainfall at a certain place is normally distributed with mean 45 cm . The rainfall during the last five years are $48 \mathrm{~cm}, 42 \mathrm{~cm}, 40 \mathrm{~cm}, 44 \mathrm{~cm}$ and 43 cm . Can we conclude that the average rainfall during the last five years is less than the normal rainfall? Test at 5% level of significance.
