Visit **www.brpaper.com** for downloading previous years question papers of B-tech,Diploma,BBA,BCA, MBA,MCA,Bsc-IT,M-Tech,PGDCA,B-com

| Roll No. |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|
|          |  |  |  |  |  |  |

**Total No. of Questions: 09** 

Total No. of Pages: 02

# B. Tech. (Sem. 1) ENGINEERING MATHEMATICS-I Subject Code: BTAM-101 Paper ID: A1101

Time: 3 Hrs.

Max. Marks: 60

### **INSTRUCTIONS TO CANDIDATES:**

- 1. Attempt all sub-questions from Question 1 (2 Marks each)
- 2. Attempt any FIVE questions from Sections A and B, selecting at least 2 from each Section (8 Marks each)

### SECTION A

- **l.** (a) Trace the curve  $x^2 = y^3$ .
  - (b) Find the area bounded by,  $y^2 = 9x$  and y = -x.
  - (c) Find the length of an arc of the parabola,  $y = x^2$  measured from the vertex.
  - (d) If  $u = x^y$ , then find  $\frac{\partial^3 u}{\partial x \partial y \partial x}$ .
  - (e) Mention any one advantage and any one disadvantage of Lagrange's method of multipliers.
  - (f) Evaluate  $\int_0^1 \int_0^{\sqrt{y}} xy \, dx \, dy$ .
  - (g) If  $\overrightarrow{F(t)}$  has a constant direction, then show that  $\overrightarrow{F} \times \frac{d\overrightarrow{F}}{dt} = \overrightarrow{0}$ .
  - (h) Find grad  $\varphi$  where  $\varphi = 3x^2 y y^3 z^2$  at the point (1, -2, -1).
  - (i) If  $= \vec{F} = 3xy \vec{l} y^2 \vec{j}$ , evaluate  $\int \vec{F} \times d\vec{r}$  along the curve  $y = 2x^2$  from (0, 0) to (1, 2).
  - (j) State Stoke's theorem.

## SECTION B

- 2. Trace the curve  $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ , giving proper arguments.
- 3. Find the volume of the solid generated by revolving an arc of the catenary,  $y = c \cosh \frac{x}{c}$  about x-axis between x = a and x = b.

4. If 
$$u = sin^{-1} \frac{x^2 + y^2}{x + y}$$
, find the value of  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ 

**5.** Examine the extreme values of  $x^3 + y^3 - 3axy$ .

### **SECTION C**

**6.** Evaluate after changing the order of integration,

$$\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx.$$

- If \$\vec{V}\$ and \$\vec{U}\$ be the vectors joining the fixed points (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) and (x<sub>2</sub>, y<sub>2</sub>, z<sub>2</sub>) respectively to a variable point (x,y,z) then show that,
  grad (\$\vec{V}\$. \$\vec{U}\$) = \$\vec{V}\$ + \$\vec{U}\$.
- 8. Verify Green's theorem in the plane for  $\int (3x^2 8y^2)dx + (4y 6xy)dy$  along the boundary of the region enclosed by x = 0, y = 0, x + y = 1.
- 9. If  $\vec{E}$  and  $\vec{H}$  are irrotational, prove that  $\vec{E} \times \vec{H}$  is solenoidal.

