Roll No. \square

Total No. of Questions: 09
Total No. of Pages: 02

B. Tech. (Sem. 1)
 ENGINEERING MATHEMATICS-I
 Subject Code: BTAM-101
 Paper ID: A1101

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. Attempt all sub-questions from Question 1 (2 Marks each)
2. Attempt any FIVE questions from Sections A and B, selecting at least $\mathbf{2}$ from each Section (8 Marks each)

SECTION A

I. (a) Trace the curve $x^{2}=y^{3}$.
(b) Find the area bounded by, $y^{2}=9 x$ and $y=-x$.
(c) Find the length of an arc of the parabola, $y=x^{2}$ measured from the vertex.
(d) If $\mathrm{u}=\mathrm{x}^{\mathrm{y}}$, then find $\frac{\partial^{3} u}{\partial x \partial y \partial x}$.
(e) Mention any one advantage and any one disadvantage of Lagrange's method of multipliers.
(f) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{y}} x y d x d y$.
(g) If $\overrightarrow{F(t)}$ has a constant direction, then show that $\vec{F} \times \frac{d \vec{F}}{d t}=\overrightarrow{0}$.
(h) Find grad φ where $\varphi=3 x^{2} y-y^{3} z^{2}$ at the point (1, $-2,-1$).
(i) If $=\vec{F}=3 x y \vec{l}-\mathrm{y}^{2} \vec{j}$, evaluate $\int \vec{F} \times d \vec{r}$ along the curve $\mathrm{y}=2 \mathrm{x}^{2}$ from $(0,0)$ to $(1,2)$.
(j) State Stoke's theorem.

SECTION B

2. Trace the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$, giving proper arguments.
3. Find the volume of the solid generated by revolving an arc of the catenary, $\mathrm{y}=\mathrm{c} \cosh \frac{x}{c}$ about x -axis between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.
4. If $\mathrm{u}=\sin ^{-1} \frac{x^{2}+y^{2}}{x+y}$, find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$
5. Examine the extreme values of $x^{3}+y^{3}-3 a x y$.

SECTION C

6. Evaluate after changing the order of integration,

$$
\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x
$$

7. If \vec{V} and \vec{U} be the vectors joining the fixed points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ respectively to a variable point (x, y, z) then show that, $\operatorname{grad}(\vec{V} \cdot \vec{U})=\vec{V}+\vec{U}$.
8. Verify Green's theorem in the plane for $\int\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ along the boundary of the region enclosed by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}+\mathrm{y}=1$.
9. If \vec{E} and \vec{H} are irrotational, prove that $\vec{E} \times \vec{H}$ is solenoidal.
