Digital Circuits and Logic Design
 (CS-205, Dec-07)
 Section-A

1). a). Find the value of x in the following.
$(1100.1011)_{2}=(x)_{10}$
b). Realize AND gate using NOR gate only.
c). Differentiate between synchronous and asynchronous counters.
d). Define the term resolution of a D/A converter.
e). What is the minimum voltage value that is considered as high stage input in case of TTL logic family.
f). A presettable counter has eight flipflops. If the preset number is 125 , what is the modulus?
g). What are the advantages of CMOS memory chips over bipolar memory chips?
h). Define 1's and 2's complements.
i). Define the term resolution of an A/D inverter.
j). Using Boolean algebraic theorems, prove that

$$
\mathrm{A}+\bar{A} \mathrm{~B}+\mathrm{A} \bar{B}=\mathrm{A}+\mathrm{B}
$$

Section-B

2). Find the value of x in the following:
(a) $(835)_{10}=(x)_{B C D}$
(b). (ETC.B $)_{16}=(x)_{8}$
(c). $(1101.101)_{2}=(x)_{10}$
(d). $(12 \cdot 354)_{10}=(\mathrm{x})_{2} \quad$ (e). (BEE) $)_{x}=(2699)_{10}$

3). Simplify the following Boolean functions using K-maps.
(a) $F(A, B, C)=\Sigma(0,2,3,4,6)$
(b) $F(A, B, C, D)=\Sigma(1,3.5 / 7,9,15), d(A, B, C, D)=\Sigma(4,6,12,13)$
4). Draw and explain the operation of TTL inverter.
5). Implement the following Boolean function with a multiplexer.
$F(A, B, C, D)=(0,1,3,4,8,9,15)$
6). Draw the circuit diagram of a mod- 5 counter and convert it into decade counter.

Section-C

7). Name and discuss the various types of semiconductor memories.
8). (a) Write a short note of Bus structures.
(b) Derive a state table and state diagram of the following sequential circuit.

9). (a) Find the output voltage from a 5 bit ladder that has a digital input of 11010. Assume that $0=0 \mathrm{v}$ and $1=+10 v$
(b) Write a short note on VLSI design.

