B.Tech. (Sem. - $3^{\text {rd }}$)

 DIGITAL CIRCUITS AND LOGIC DESIGN

 DIGITAL CIRCUITS AND LOGIC DESIGN}

SUBJECT CODE : CS - 205

Paper ID : [A0453]

[Note : Please fill subject code and paper ID on OMR]
Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section - C.

Section-A

Q1) $(10 \times 2=20)$
a) Convert binary number 1001 into gray.
b) Find SOP form of $f=A B+B C+\bar{A}$.
c) Implement half subtractor using NAND gates.
d) Find \% age resolution of a 12 bit BCD input D / A converter which has full scale o/p of 29.97 V .
e) Convert a D flip flop into a T flip flop.
f) Differentiate between Asynchronous counter and Synchronous counter.
g) What is significance of figure of merit of flip flops.
h) Design a 4 : 1 mux.
i) Classify logic families on the basis of number of gates on a single chip.
j) Write pros and cons of SRAM and DRAM cell.

Section - B

$$
(4 \times 5=20)
$$

Q2) Design a combinational ckt with 3 inputs and 1 output. The output is high only when more than one input is high.

Q3) Design a MOD 6 counter using T-flip flops.

Q4) What are multivibrator circuits. Explain Astable multivibrator with the help of circuit diagram.

Q5) Explain the operation of two input TTL NAND gate.
Q6) Using Boolean Algebra show that

$$
(A+B)(\bar{A}+C)(B+C)=A C+B \bar{A}
$$

Section - C

$$
(2 \times 10=20)
$$

Q7) Design a comparator circuit which compares two 2 bit numbers. It has three outputs $\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}$ and $\mathrm{A}=\mathrm{B}$. Also show that $\mathrm{A}<\mathrm{B}=\overline{\mathrm{A}}>\mathrm{B} \cdot \overrightarrow{\mathrm{A}=\mathrm{B}}$.

Q8) Design a three bit, MOD 6, unit distance up-down counter.
Q9) What are programmable logic devices. What are their advantages. Explain in detail the architecture of a programmable logic device.

