Visit: www.brpaper.com for Previous year Question papers of B-tech, BBA, BCA, MCA, MBA, BSc-IT, Diploma, Distance Education, Msc-IT,M-Tech,PGDCA, B-Com.

Roll	No.	B. Tech.(CSE, IT) (Sem4 th) DISCRETE STRUCTURES Subject Code: BTCS-402 Paper ID: [A2305]	Total No. of Pages: 02 Total No. of Questions: 09
Tim	e: 3 H	rs.	Max. Marks: 60
INS	ГRUC	TIONS TO CANDIDATE:	
1 2 3	L. Sed 2. Sed an 3. Sed att	ction-A is compulsory consisting of TEN questions carrying ction-B contains FIVE questions carrying FIVE marks each y four questions. ction –C contains THREE questions carrying TEN marks e empt any two questions SECTION-A	g two marks each h and student has to attempt ach and student has to
SECTION-A			
	Q.1.	Write Briefly:-	
		(a) How many full binary trees are there with 2 internal ver	tices?
		(b) Define group.	
		(c) Define semi group.	\mathbf{C}
	~	(d) Define identity functions with example.	\$.
		(e) Define invertible functions with example.	C1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(f) Define asymmetric relation with example	0
1		(g) Define connected and disconnected graphs.	
		(h) Define symmetric relation with example.	0
		(i) Write elementary properties of a ring.	7
		(j) What is difference between a graph and a tree.	
SECTION-B			
	Q.2.	IF A and B are any two sets then prove that	
		$A \cup B = A \cap B \Leftrightarrow A = B$	
	Q.3.	If R is an equivalence relations in a set A, then prove that F relation.	⁻¹ is also an equivalence
	Q.4.	Solve the recurrence relation $a_{n+2} - 2a_{n+1} + 4a_n = 0$ .	
			Deges 1

- **Q.5.** Draw regular graphs of degree 2 and 3.
- **Q.6.** Show that the sum of degree of all the vertices in a graph G, is even.

## **SECTION-C**

- **Q.7.** Prove that the intersection of two ideals of R is an ideal of R.
- **Q.8.** Solve the recurrence relation  $a_{r+2}$ - $3a_{r+1}$ + $2a_r = 0$ , by the method of generating function with the initial conditions  $a_0 = 2$  and  $a_1 = 3$
- **Q.9.** Show that the following Boolean expression are equivalent:
  - a)  $x \land (y \lor (y \land (y \lor y)));x$
  - b)  $(z \lor x) \land ((x \land y) \lor z) \land (z \lor y); x \land y.$

....END....

www.hrk