# B. Tech.(CSE, IT) (Sem.-4 ${ }^{\text {th }}$ ) 

## DISCRETE STRUCTURES

Subject Code: BTCS-402
Paper ID: [A2305]
Time: 3 Hrs.

Max. Marks: 60

## INSTRUCTIONS TO CANDIDATE:

1. Section- $A$ is compulsory consisting of TEN questions carrying two marks each
2. Section-B contains FIVE questions carrying FIVE marks each and student has to attempt any four questions.
3. Section-C contains THREE questions carrying TEN marks each and student has to attempt any two questions

## SECTION-A

Q.1. Write Briefly:-
(a) How many full binary trees are there with 2 internal vertices?
(b) Define group.
(c) Define semi group.
(d) Define identity functions with example.
(e) Define invertible functions with example.
(f) Define asymmetric relation with example
(g) Define connected and disconnected graphs.
(h) Define symmetric relation with example.
(i) Write elementary properties of a ring.
(j) What is difference between a graph and a tree.

## SECTION-B

Q.2. IF $A$ and $B$ are any two sets then prove that

$$
A \cup B=A \cap B \Leftrightarrow A=B
$$

Q.3. If $R$ is an equivalence relations in a set $A$, then prove that $R^{-1}$ is also an equivalence relation.
Q.4. Solve the recurrence relation $a_{n+2}-2 a_{n+1}+4 a_{n}=0$.
Q.5. Draw regular graphs of degree 2 and 3 .
Q.6. Show that the sum of degree of all the vertices in a graph G , is even.

## SECTION-C

Q.7. Prove that the intersection of two ideals of $R$ is an ideal of $R$.
Q.8. Solve the recurrence relation $a_{r+2}-3 a_{r+1}+2 a_{r}=0$, by the method of generating function with the initial conditions $a_{0}=2$ and $a_{1}=3$
Q.9. Show that the following Boolean expression are equivalent:
a) $x \wedge(y \vee(\mathrm{y} \wedge(y \vee \mathrm{y}))) ; \mathrm{x}$
b) $(z \vee x) \wedge((x \wedge y) \vee z) \wedge(z \vee y) ; x \wedge y$.

