Roll No.
Total No. of Pages : 03
Total No. of Questions: 09

> B.Tech. (CSE / IT) (Sem.-4th)
> MATHEMATICS-III
> Subject Code: CS-204
> PaperID: [A0495]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
(a) Define the term "Uniform continuity".
(b) Verify Rolle's theorem for $f(x)=(x-a)^{m}(y-b)^{n}$ where m, n are the integers in $[a, b]$.
(c) State the fundamental theorem of integral calculus.
(d) Define a conformal mapping.
(e) Explain the term "Residue" at a pole.
(f) State clearly the wave equation and the heat equation.
(g) A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3} \frac{\pi x}{l}$. If it is required to find the displacement $y(x, t)$ then write the initial and boundary conditions for the problem.
(h) In the equation, $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$, what is represented by c^{2} ?
(i) Classify the equation, $\left(1+x^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+\left(5+2 x^{2}\right) \frac{\partial^{2} u}{\partial x \partial t}+\left(4+x^{2}\right) \frac{\partial^{2} u}{\partial t^{2}}=0$.
(j) Write the 5-point diagonal formula.

SECTION-B

2. Find the area common to the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
3. State and prove the Cauchy's integral formula.
4. Show that $\int^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$.
5. Show that the transformation $\omega=\frac{1}{z}$ transforms the hyperbola $x^{2}-y^{2}=1$ is a lemniscate.
6. Use Runga-Kutta method of fourth order to solve,

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} \text { with } y(0)=1 \text { at } x=0.2
$$

SECTION-C

7. If $f(z)=u+i v$ is an analytic function, prove that,

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log |f(z)|=0
$$

8. Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions

$$
\mu(0, y)=\mu(l, y)=\mu(x, 0)=0 \text { and } \mu(x, a)=\frac{\sin n \pi x}{l}
$$

9. Given the values of $\mu(x, y)$ on the boundary of the following square,

Evaluate the function $\mu(x, y)$ satisfying the Laplace equation, $\nabla^{2} \mu=0$ at the pivotal points of this figure.

