B. Tech.(3D ANIMATION \& Graphics) (IT)(CSE) (Sem. $\mathbf{3}^{\text {rd }}$)
 MATHEMATICS-III
 Subject Code: BTAM-302
 Paper ID: [A2143]

Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATE:

(i)Section -A, is Compulsory.
(ii)Attempt any four questions from Section-B.
(iii)Attempt any two questions from Section-C.

SECTION - A

1. (a) Write down the Fourier series and Fourier coefficients for the function

$$
f(x)=\left\{\begin{array}{l}
-k,-\pi<x<0 \\
k, 0<x<\pi
\end{array}\right.
$$

(b)Expand $f(x)=k$ for $0<x<2$ in half range Fourier cosine series.
(c)Find the Laplace transform of $f(t)=|t-1|+|t+1|, t \geq 0$.
(d Find the inverse Laplace transform of $f(s)=\frac{s+2}{s^{2}-4 s+13}$.
(e) Form the partial differential equation from $\mathrm{z}=f\left(x^{2}-\mathrm{y}^{2}\right)$.
(f) Examine the continuity of $f(z)=\left\{\begin{array}{c}\frac{\operatorname{Im}(z)}{|z|}, z \neq 0 \\ 0, z=0 .\end{array}\right.$
(g) Explain Rayleigh's power method for finding the largest eigen-value and the corresponding Eigen-vector.
(h) Derive Euler's and modified Euler's method geometrically.
(i) Mention different type of applications of binomial distribution,
(j) Write down any four important properties of F-distribution.

Section-B
(5 marks each)
2. Find the Laplace transforms of (i) $f(t)=e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$, (ii) $f(t)=\frac{1-\cos 2 t}{t}$.
3. Determine the analytic function whose real part is

$$
u(x, y)=e^{2 x}(x \cos 2 y-y \sin 2 y)
$$

4. Solve: $x+10 y+4 z-6,2 x-4 y+10 z=-15,9 x+2 y+4 z=20$, by Gauss-Seidel iteration method.
5. Apply Runge-Kutta method of order 4, find $y(0.2)$ in steps of 0.1 given that

$$
\frac{d y}{d x}=3 x+2 y \text { and } \mathrm{y}=1 \text { at } \mathrm{x}=0
$$

6. A random sample of size 16 has 53 as mean. The sum of squares of the derivation from mean is 135 . Can this sample be regarded as taken from the population having 56 as mean? Obtain 95% and 99% confidence limits of the mean of the population.

Section-C

7. (a) Find the Fourier series expansion of the following periodic function with period 4

$$
f(x)=\left\{\begin{array}{l}
2+x,-2 \leq x<0, \\
2-x, 0 \leq x \leq 2
\end{array} \quad f(x+4)=f(x)\right.
$$

(b) Solve the partial differential equation: $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q-x y-z x$.
8. (a) Prove that if $u=x^{2}-y^{2}, v=-\frac{y}{x^{2}+y^{2}}$, then both satisfy Laplace's equation, but $u+i v$ is not analytic.
(b) Solve the system of equations using Gauss elimination method with partial pivoting:

$$
x_{1}+x_{2}-2 x_{3}=3,4 x_{1}-2 x_{2}+x_{3}=5,3 x_{1}-x_{2}+3 x_{3}=8 .
$$

9. A car hire-firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the number of days in a year on which
(i) Neither car is on demand,
(ii) A car demand is refused
