Roll No.

Paper ID [A0459]

(Please fill this Paper ID in OMR Sheet)
 B.Tech. (Sem. $-3^{\text {rd }} / 4^{\text {th }}$)
 MATHEMATICS - III (CS - 203/204)

Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section - C.

Section-A

Q1)
$(10 \times 2=20)$
a) Discuss the relationships between limit, continuity and differentiation of a function.
b) Define fundamental theorem of Integral Calculus.
c) Distinguish between Trapezoidal and Simpson's $\frac{1}{3}$ rd rule of numerical integration.
d) Define analytic function and Cauchy-Riemann equations.
e) Poles and residues of analytic functions.
f) Define residue theorem of functions of complex variables.
g) Explain the conditions for the existance of Laplace transform of a function.
h) Define conformal mapping.
i) Discuss the categorization of Laplace, wave and heat equations.
j) State Rolle's theorem.

Section - B

Q2) Determine the analytic function $f(z)=u+i v$ if
$u-v=\frac{\operatorname{Cos} x+\operatorname{Sin} x-e^{-y}}{2(\operatorname{Cos} x-\operatorname{Cosh} y)}$
and $f\left(\frac{\pi}{2}\right)=0$.
Q3) Evaluate
$\int_{\mathrm{C}} \frac{z-3}{z^{2}+2 z+5} d z$
where C is the circle $|z+i+1|=2$.

Q4) An impulse $\mathrm{I}(\mathrm{kg}-\mathrm{sec})$ is applied to a mass m attached to a spring having a spring constant k. The system is damped with damping constant μ. The differential equation governing the phenomena is
$m \frac{d^{2} x}{d t^{2}}+k x+\mu \frac{d x}{d t}=\mathrm{I} \delta(x)$.
where $\delta(x)$ is unit impulse function. Derive expression for displacement $x(t)$ of the mass, assuming initial conditions $x(0)=x^{\prime}(0)=0$.

Q5) Find the area included between the curves $y^{2}(2 a-x)=x^{3}$ and its asymptote.

Q6) Employ Taylor's method to obtain approximate solution of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$.

Section - C

Q7) Using Runge-Kutta method of order 4, 'compute $y(0.2)$ and $y(0.4)$ from $10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.
taking $h=0.1$.

Q8) A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \operatorname{Sin}^{3}\left(\frac{\pi x}{l}\right)$. Find the displacement $y(x, t)$, using separation of variable technique.

Q9) Show that the transformation

$$
w=z+\frac{a^{2}}{z}
$$

transforms circles with origin at the centre in the z-plane into coaxial concentric, confocal ellipses in the w - plane.

๔ฺ๘

