Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem. - 2) ENGINEERING MATHEMATICS - II
 M Code: 54092
 Subject Code: BTAM-102
 Paper ID: [A1111]

Time: 3 Hrs.
Max. Marks: 60
INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select at least TWO questions from each SECTION - B \& C.

SECTION A

1. a) Find the general value of $\log i^{i}$.
b) Solve the the differential equation $p=\sin (y-x p)$, where p has its usual meaning.
c) Test whether the differential equation $\left(5 x^{3}+12 x^{2}+6 y^{2}\right) d x+6 x y d y=0$ is exact or not? Give reasons. If not. Find its integrating factor which will make it exact.
d) Show that e^{z} is a periodic function. Find its fundamental period.
e) Test whether the set of vectors $\{(1,0,0),(1,1,1),(1,2,3)\}$ is linearly independent or dependent.
f) Examine the convergence / divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$
g) Test the absolute convergence of the series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n \sqrt{n}}$
h) If λ is an eigen value or a matrix A then prove that λ^{-1} is an eigen value of A^{-1}.
i) For what values of ' k ' the system of equation

$$
x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+k z=\lambda,
$$

has uniue solution.
j) If $x^{2}-2 x \cos \theta+1=0$, then show that $x^{2 n}-2 x^{n} \cos n \theta+1=0$

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. a) Solve the differential equation:

$$
y-2 p x=\tan ^{-1}\left(x p^{2}\right)
$$

b). Use method of variation of parameters to find the general solution of the differential equation: $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$
3. a) Find the solution of the differential equation:

$$
x y\left(1+x y^{2}\right) d y=d x
$$

b) Find the particular solution of the differential equation:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=\log x \sin (\log x)
$$

by using operator method.
4. a) Solve the simultaneous linear differential equation:

$$
\frac{d x}{d t}+2 y+\sin t=0, \frac{d y}{d t}-2 x-\cos t=0
$$

b) Find the particular solution of the differential equation:

$$
y^{\prime \prime \prime}-7 y^{\prime \prime}+10 y^{\prime}=e^{2 x} \sin x
$$

5. An L-C-R circuit, the charge q on a plate of the condensor is given by the equation: $\mathrm{L} \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E \sin p t$, where $\frac{d q}{d t}=i$ The circuit is tuned to resonance so that $p^{2}=\frac{1}{L C}$. If $q=i=0$ when $t=0$, show that for small values of R / L, the current in the circuit at time t is given by $(\mathrm{Et} / 2 \mathrm{~L})$ sinpt.

SECTION C

6. a) Find the eigen values and the corresponding eigen vectors of the matrix:

$$
\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

b) Test the conditional convergence of the series. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{2}+1}$

Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA

7. a) Test the consistency of the system of equations:

$$
x+2 y-z=1 ; 3 x-2 y+2 z=2 ; 7 x-2 y+3 z=5
$$

and if consistent then solve it completely.
b) Reduce the matrix $\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$ to normal form and hence find its rank.
8. a) Test for what values of ' x ' for which the series

$$
\frac{1}{1.2} x+\frac{1}{3.4} x^{2}+\frac{1}{5.6} x^{3}+\frac{1}{7.8} x^{4}+\cdots \infty
$$

Converges / diverges.
b) Examine the convergence / diverge of the series:

$$
\frac{\sqrt{2}-1}{3^{3}-1}+\frac{\sqrt{3}-1}{4^{3}-1}+\frac{\sqrt{4}-1}{5^{3}-1}+\cdots \infty
$$

9. a) If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+p=0$, then prove that $\tan ^{-1} \alpha+\tan ^{-1}$ $\beta+\tan ^{-1} \gamma=n \pi$ radians except in one particular case. Mention this case.
b) If $\sin ^{-1}(u+i v)=\alpha+i \beta$, then prove that $\sin ^{2} \alpha$ and $\cosh ^{2} \beta$ are the roots of the equation $x^{2}-x\left(1+u^{2}+v^{2}\right)+u^{2}=0$
