Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem. - 1) ENGINEERING MATHEMATICS - I

M Code: 54091

Subject Code: BTAM-101
Paper ID: [A1101]
Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt FIVE questions from SECTION B \& C carrying EIGHT marks each, selecting at least TWO questions each from SECTION - B \& C.
4. Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION A

1. a) Find asymptotes, parallel to axes, of the curve: $y=\frac{x^{2}+1}{x^{2}-1}$.
b) Write a formula to find the volume of the solid generated by the revolution, about x - axis, of the area bounded by the curve $y=f(x)$, the x - axis and the ordinates $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.
c) Find the value of $\frac{\partial(x, y)}{\partial(r, \theta)}$, where $x=r \cos \theta \& y=r \sin \theta$.
d) If an error of 1% is made in measuring the major and minor axes of an ellipse, what is the percentage error in its area?
e) Is the function $f(x, y, z)=\frac{4 x^{3}+2 y^{2} z}{x+2 y+3 z}$. ? If yes, what is its degree?
f) What is the value of $\iint x y d x d y$ over the positive quadrant of the circle $x^{2}+y^{2}=1$?
g) Give geometrical interpretation of $\int_{1}^{2} \int_{1}^{3} d x d y$
h) Show that for the vector field $\vec{F}=\left(\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{x}\right) \hat{\imath}-(2 \mathrm{xy}+\mathrm{y}) \hat{\jmath}, \nabla \times \vec{F}=0$.
i) Show that the vector field $\vec{F}=\left(-\mathrm{x}^{2}+\mathrm{yz}\right) \hat{\imath}+\left(4 \mathrm{y}-\mathrm{z}^{2} \mathrm{x}\right) \hat{\jmath}+(2 \mathrm{xz}-4 \mathrm{z}) \hat{k}$ is solenoidal.
j) State Green's theorem in plane.

Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA

2. Trace the following curves by giving their salient feature:
a) $y^{2}(a-x)=x^{2}(a+x)$.
b) $r=a(1-\cos \theta)$
3. a) Find the whole length of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
b) Use definite integral to find the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
4. a) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2}=-9(x+y+z)^{-2}$.
b) State Euler's theorem for homogeneous functions and apply it to show that

$$
\begin{equation*}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u, \quad \text { where } \quad \sin u=\frac{x^{2}+y^{2}}{x+y} . \tag{4,4}
\end{equation*}
$$

5. a) The temperature T at any point (x, y, z) in space is $T=400 x y z^{2}$. Find the highest temperature on the surface of the unit sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$.
b) If $f(x, y)=\tan ^{-1} x y$, compute $f(0.9,-1.2)$ approximately.

SECTION C

6. a) Evaluate the following integral by changing the order of integration:

$$
\begin{equation*}
\text { b) Evaluate the triple integral } \int_{0}^{1} \int_{0}^{a} \int_{0}^{x-x^{2}} \int_{0}^{x+y} e^{x+y+z} d x d y d x \text {. } \tag{4,4}
\end{equation*}
$$

7. a) Find a unit vector normal to the surface $x^{2}+y^{2}+z^{2}=9$ at the point (2, -1, 2).
b) If $\mathrm{u}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \& \vec{v}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, Show that $\nabla \cdot(u \hat{v})=5 u$
8. a) If $\overrightarrow{\mathrm{F}}=3 x y \hat{\imath}-y^{2} \hat{\jmath}$, evaluate, $\int_{c} \vec{F} . d \hat{R}$ where C is the curve in the $x y$-plane $\mathrm{y}=2 \mathrm{x}^{2}$ from $(0,0)$ to $(1,2)$.
b) Compute $\int_{c} \vec{F} . \widehat{N} d s$, Where $\vec{F}=x \hat{\imath}+(z-z x) \hat{\jmath}-x y \hat{k}$ and S is the triangular surface with vertices $(2,0,0),(0,2,0)$ and $(0,0,4)$.
9. State Gauss Divergence theorem and verify it for $\vec{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}$ taken over the cube bounded by $x=0, x=1 ; y=0, y=1, z=0, z=1$.
