Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANATotal No. of Questions: 09

B.Tech. (CE)/(ECE)/(EE)/(Electrical \& Electronics)/ B.Tech. (Electronics \&

 Computer Engg.)/ B.Tech. (Electronics \& Electrical)/(ETE) (2011 Onwards)/B.Tech. (Electrical Engg. \& Industrial Control) (2012 Onwards) / B.Tech.
(Electronics Engg.) (2012 Onwards) (Sem. - 3)
ENGINEERING MATHEMATICS - III
M Code: 56071
Subject Code: BTAM-301
Paper ID: [A1128]
Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. a) Evaluate, $\int \frac{z^{3}}{z+i} d z$ along the circle, $|z|=2$.
b) Under what condition or conditions the general linear partial differential equation of second order is elliptic.
c) Define the term "an indicial equation".
d) Find, L $\left[\left(\mathrm{t} \mathrm{e}^{-t} \sin 4 \mathrm{t}\right)\right]$.
e) Form a partial differential equation from $z=f(x+y-z, x y z)$.
f) Expand $\sin \mathrm{z}$ in Taylor's series about the point $\mathrm{z}=0$.
g) Find the sum of the residues at each pole of the function $\mathrm{f}(\mathrm{z})$, lying inside the circle $|z|=3$ where $\mathrm{f}(\mathrm{z})=\frac{\tan z}{z}$.
h) If it is required to find the Fourier series of an odd function in $(-\pi, \pi)$ then which formulae you will use?
i) What are Dirichlet's conditions for the expansion of $f(x)$ as a Fourier series in $(-\pi, \pi)$?
j) State the change of scale property of Laplace transforms.

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. Solve the partial differential equation, $\left(D^{3}-4 D^{2} D^{\prime}+4 D D^{\prime}\right) z=6 \sin (3 x+2 y)$.
3. State and prove the Cauchy's integral formula.
4. Using Laplace transforms, solve the differential equation,

$$
\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t \text { where } x(0)=1, x\left(\frac{\pi}{2}\right)=-1
$$

5. Find the Fourier series to represent, $f(x)=\frac{1}{4}(\pi-x)^{2}$, where $0 \leq x \leq 2 \pi$
6. Find the inverse Laplace transform of the function, $\cot ^{-1}\left(\frac{s}{a}\right)$.

SECTION C

7. Use the concept of residues to evaluate, $\int_{0}^{2 \pi} \frac{d x}{5-4 \sin x}$
8. A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y=a \sin \frac{\pi x}{l}$ from which it is released at time $\mathrm{t}=0$.

Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$.
9. Solve in series, $x \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+2 y=0$.

