Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANATotal No. of Questions: 09

B.Tech. (CSE)/(IT) (2011 Onwards) (Sem. - 3)
 DIGITAL CIRCUITS \& LOGIC DESIGN
 M Code: 56593
 Subject Code: BTCS-303
 Paper ID: [A1125]

Time: 3 Hrs.
Max. Marks: 60
INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. Write briefly:
a) Weighted BCD
b) Principle of Duality
c) Exclusive-NOR versus Exclusive-OR
d) Multiplexer versus Demultiplexer
e) Uses of Shift Registers
f) FPGA
g) Convert 10101_{2} to decimal
h) TTL and CMOS
i) Number of Gate inputs required for expression: $A B C+A \bar{B} C D+E \bar{F}+A D$
j) MOSFET

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. Evaluate Following:
a) Multiply $2 \mathrm{~A}_{16}$ by $\mathrm{B6}_{16}$
b) Subtract 14 from 46 using 8 -bit 2's complement arithmetic.
3. State and prove De-Morgan's Theorems.
4. Explain the Operation of two input TTL NAND gate.
5. Design and implement a 4-bit binary to gray convertor.
6. Distinguish between combinational and sequential switching circuits.

SECTION C

7. Write short note on following
a) Successive approximation A to D conversion technique
b) Ripple Carry Adder
8. What are programmable logic devices? What are their advantages? Explain in detail the architecture of a programmable logic device.
9. Using Boolean algebra show that
a) $\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}=\mathrm{AB}+\overline{\mathrm{AC}}$
b) $\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}=(\mathrm{A}+\mathrm{C})(\overline{\mathrm{A}}+\mathrm{B})$
