Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANATotal No. of Questions: 09
B.Tech.(3DAnimation \& Graphics)(CSE/IT) (2012 Onwards) (Sem. - 3)

MATHEMATICS - III
M Code: 70808
Subject Code: BTAM-302
Paper ID: [A2143]
Time: 3 Hrs.
Max. Marks: 60
INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. a) State and prove first shifting theorem for Laplace transforms.
b) Show that an analytic function of constant absolute value is constant.
c) Discuss modified Euler's method.
d) Find the half-range cosine series for the function $\mathrm{f}(x)=x^{2}$ in the range $0 \leq x \leq \pi$.
e) Solve $\sqrt{p}+\sqrt{q}=1$
f) Prove linearity property of Laplace transforms.
g) Find the inverse Laplace transform of $(6+s) /\left(s^{2}+6 s+13\right)$.
h) Write Cauchy-Riemann equations in polar form.
i) Six coins are tossed 6400 times. Using the Poison distribution, determine the approximate probability of getting six heads x times.
j) State Cayley-Hamilton theorem.

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. Find Fourier series expansion of $\mathrm{f}(x)=x-x^{2}$ from $x=-\pi$ to $x=\pi$.

Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$
3. Show that if $\mathrm{L}(\mathrm{f}(\mathrm{t}))=\mathrm{F}(\mathrm{s})$ then $\mathrm{L}\left(\frac{f(t)}{t}\right)=\int_{S}^{\infty} F\left(s^{\prime}\right) d s^{\prime}$ provided the integral exists. Hence evaluate $L\left(\frac{e^{-a t}-e^{-b t}}{t}\right)$
4. Show that the function $u(x, y)=\mathrm{e}^{\mathrm{a} x} \cos$ by is harmonic. Find its conjugate harmonic function $v(x, y)$ and the corresponding analytic function $f(\mathrm{z})$.
5. Using Gauss elimination method solve
$x-\mathrm{y}+\mathrm{z}=1,2 \mathrm{x}+\mathrm{y}-\mathrm{z}=2$ and $5 \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=5$.
6. Two independent samples of sizes 7 and 6 had the following values:
$\begin{array}{lllllllll}\text { Sample A } & 28 & 30 & 32 & 33 & 31 & 29 & 34\end{array}$
$\begin{array}{lllllllll}\text { Sample B } & 29 & 30 & 30 & 24 & 27 & 28 & -\end{array}$
Examine whether the samples have been chosen from normal population having the same variance.

SECTION C

7. Solve $\left(p^{2}+q^{2}\right) y=q z$.
8. Find the eigen values and the corresponding eigen vectors of $\left[\begin{array}{lll}0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
9. Use Runge's method of order four to find an approximate value of y when $x=0.8$, given that

$$
\frac{d y}{d x}=\sqrt{x+y} ; y(0.4)=0.4 .(\text { Take } h=0.2) .
$$

