Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU, MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE, HARYANA DIPLOMA, MDU HARYANA

Total No. of Questions: 09

B.Tech.(3DAnimation & Graphics)(CSE/IT) (2012 Onwards) (Sem. – 3) MATHEMATICS – III M Code: 70808 Subject Code: BTAM-302 Paper ID: [A2143]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

- 1. a) State and prove first shifting theorem for Laplace transforms.
 - b) Show that an analytic function of constant absolute value is constant.
 - c) Discuss modified Euler's method.
 - d) Find the half-range cosine series for the function $f(x) = x^2$ in the range $0 \le x \le \pi$.
 - e) Solve $\sqrt{p} + \sqrt{q} = 1$
 - f) Prove linearity property of Laplace transforms.
 - g) Find the inverse Laplace transform of $(6 + s)/(s^2 + 6s + 13)$.
 - h) Write Cauchy-Riemann equations in polar form.
 - i) Six coins are tossed 6400 times. Using the Poison distribution, determine the approximate probability of getting six heads x times.
 - j) State Cayley-Hamilton theorem.

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU, MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE, HARYANA DIPLOMA, MDU HARYANA

SECTION B

2. Find Fourier series expansion of $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$.

Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \underline{\qquad} = \frac{\pi^2}{12}$

- 3. Show that if L(f(t)) = F(s) then $L\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(s') ds'$ provided the integral exists. Hence evaluate $L\left(\frac{e^{-at} - e^{-bt}}{t}\right)$
- 4. Show that the function $u(x,y) = e^{ax} \cos by$ is harmonic. Find its conjugate harmonic function v(x, y) and the corresponding analytic function f(z).
- 5. Using Gauss elimination method solve

x-y+z = 1, 2x + y - z = 2 and 5x - 2y + 2z = 5.

6. Two independent samples of sizes 7 and 6 had the following values:

Sample A	28	30	32	33	31	29	34
Sample B	29	30	30	24	27	28	_

Examine whether the samples have been chosen from normal population having the same variance.

SECTION C

- 7. Solve $(p^2 + q^2)y = qz$.
- 8. Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix}$
- 9. Use Runge's method of order four to find an approximate value of y when x = 0.8, given that

$$\frac{dy}{dx} = \sqrt{x+y}$$
; $y(0.4) = 0.4$. (Take $h = 0.2$).