Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANATotal No. of Questions: 09
B.Tech. (ME) (2011 Onwards) (Sem.- 6)

STATISTICAL AND NUMERICAL METHODS IN ENGINEERING
 M Code: 71188
 Subject Code: BTME-604
 Paper ID: [A2364]

Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. a) Define standard deviation.
b) Let two fair dice be rolled. If the sum of 7 is obtained, find the probability that at least one of the dice shows 2 .
c) Derive the formula for mean of binomial distribution.
d) $\operatorname{Sin} x=x-\frac{x^{3}}{\angle 3}+\frac{x^{5}}{\angle 5}-\ldots .+\frac{(-1)^{n} x^{2 n-1}}{\angle 2 n-1}$. Find its approximate value if $x=0.2$, using three terms of the expansion.
e) Derive sufficient condition for convergence of Newton-Raphson method.
f) By using Power method calculate the dominant eigen values of $\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]$
g) Find a polynomial $\mathrm{P}(x)$ of degree 2 such that $\mathrm{P}(1)=1, \mathrm{P}(3)=27$ and $\mathrm{P}(4)=64$.
h) Write Adam's Predictor- Corrector Formulas.
i) Using Lagranges interpolation formula express $\frac{x^{2}+6 x-1}{(x-1)(x-4)(x-6)}$ as a sum of partial fractions.
j) Using Stirling's formula to find y_{35} given that $\mathrm{y}_{20}=512, \mathrm{y}_{30}=439, \mathrm{y}_{40}=346$ and $\mathrm{y}_{50}=243$.

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. The mean height of 500 students is 151 cm and the standard deviation is 15 cm . Assuming that the heights are normally distributed, find the number of students whose heights lies between 120 and 155 cm .
3. Use Newton-Raphson method solve $2 x^{2}+3 x y+y^{2}=3,4 x^{2}+2 x y+y^{2}=30$, at least up to two Iterations, near $x_{0}=-3$ and $y_{0}=2$.
4. Derive Simpson's $1 / 3$ rule and hence use it to evaluate $\int_{0}^{1} \frac{d x}{1+x}$.
5. Find the value of $y(1.5)$ using Runge Kutta method of fourth order by using $\mathrm{h}=0.25$ for the equation $y^{\prime}=x^{2}+y^{2}, y(1)=2$.
6. The distance covered by an athlete for the 50 meter race is given in the following table:

Time(sec) :	0	1	2	3	4	5	6
Distance(m):	0	2.5	8.5	15.5	24.5	36.5	50

Determine the speed of the athlete at $\mathrm{t}=3 \mathrm{sec}$ correct to two decimals.

SECTION C

7. a) A group of boys and girls were given an intelligent test. The mean score, standard deviations and number in each group are as fellows:

> Boys Girls

Mean 124
121
S.D. 12

10
$\begin{array}{lll}\mathrm{N} & 18 & 14\end{array}$
Is the mean score of boys significantly different from that of girls?
b) Fit a Poisson distribution to the following data and test for its goodness-of-fit at 5% level of significance.

$\mathrm{x}:$	0	1	2	3	4
$f:$	419	352	154	56	19

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA8. a) Show that the order of convergence of Newton-Raphson method is quadratic.
b) Find the value of x for which $\mathrm{y}=f(\mathrm{x})$ is minimum in the given range of x , using the following data. Find also the minimum value of $f(\mathrm{x})$.

$\mathrm{x}:$	0	1	2	3	4	5	6
$f(\mathrm{x}):$	769	668	541	389	401	462	495

9. a) Using Milne's method to find $y(1.4)$ given $\mathrm{dy} / \mathrm{d} x=x^{2}(1+\mathrm{y}), \mathrm{y}(\mathrm{l})=1, \mathrm{y}(1.1)=1.233$, $\mathrm{y}(1.2)=1.548$ and $\mathrm{y}(1.3)=1.979$.
b) Using finite difference method, solve the equation $y^{\prime \prime}-4 y^{\prime}+4 y=e^{3 x}$ with conditions $\mathrm{y}(0)=0, \mathrm{y}(\mathrm{l})=2$, by taking $\mathrm{n}=4$.
