Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANATotal No. of Questions: 07
BCA (2011 \& Onward) / B.Sc.(IT) (2015 \& Onwards) (Sem. - 1)
MATHEMATICS - I
M Code: 10045
Subject Code: BSIT/BSBC-103
Paper ID: [B1110]
Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION A

1. a) If A, B are two sets the prove that $B-A=B \cap A^{c}$.
b) Find all the partitions of the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
c) Let $X=\{1,2,3,4,5,6,7,8,9,10\}$. The family $\{\{1,4,8\},\{3,5,9\},\{2,7\},\{6,10\}\}$ is a partition of X. Determine the equivalence relation corresponding to the above partition.
d) Let $\mathrm{B}=\{2,3,4,6,12,36,48\}$ and S be the relation "divide" on B , Draw Hasse diagram of the relation S.
e) Using truth table, prove that $\mathrm{p} \rightarrow \mathrm{q}=(\sim \mathrm{p}) \vee \mathrm{q}$.
f) If p stands for the statement "I do not like chocolates" and q for the statement "I like icecream", then what does $\sim \mathrm{p} \wedge \mathrm{q}$ stands for?
g) Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$
h) Give an example of a graph that has
a) Euler circuit but not Hamiltonian circuit.
b) Hamiltonian circuit but not Euler circuit.
i) Obtain the linear recurrence relation from the sequence defined by $S(K)=5.2^{K}$.
j) Solve the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=0$, given by $\mathrm{a}_{0}=0, \mathrm{a}_{1}=3$.

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA
SECTION B

2. State and prove De Morgan's Laws for sets.

For where $\frac{a}{b}, \frac{c}{d} \in Q$, where Q is the set of rational numbers, define a relation R as $\frac{a}{b} R \frac{c}{d}$ if and only if $a d=b c$. Show that R is an equivalence relation on Q.
3. a) Let $\mathrm{A}=\{2,3,5,8\}, \mathrm{B}=\{4,6,16\}, \mathrm{C}=\{1,4,5,7\}$. Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} / \mathrm{b}\}$ and $\mathrm{S}\{(\mathrm{b}, \mathrm{c}): \mathrm{b} \leq \mathrm{c}\}$ be relations from A to B and B to C . Find the composite relation $\mathrm{S} \circ \mathrm{R}$. If L, M and N be the adjacency matrices of $S \circ R, R$ and S respectively. Then show that $\mathrm{L}=\mathrm{M} . \mathrm{N}$.
b) Check the validity of argument:

If I work, I cannot study. Either I work or pass mathematics.
I passed mathematics. Therefore, I study.
4. a) Over the universe of Books, define the proposition $B(x)$: x has a blue cover, $M(x): x$ is a mathematics book, $\mathrm{U}(\mathrm{x})$: x is published in United States and $\mathrm{R}(\mathrm{x}, \mathrm{y})$: The bibliography of x includes y.

Translate into words:
i) $\quad(\exists x)(\mathrm{M}(x) \wedge \sim \mathrm{B}(\mathrm{x}))$.
ii) $\quad(\forall x)(\mathrm{M}(x) \wedge \mathrm{U}(x) \rightarrow \mathrm{B}(x))$
iii) $\quad(\exists x)(\sim \mathrm{B}(x))$

Express using quantifiers:
iv) Every book with blue cover is a mathematics book.
v) There are mathematics books that are published outside the United States.
vi) Not all books have bibliography.
b) Use the principle of mathematical induction to prove
$1.3+2.4+3.5+\ldots \ldots+\mathrm{n}(\mathrm{n}+2)=\frac{n(n+1(2 n+7)}{6}$, for any natural number n .

Visit www.brpaper.com for downloading previous years question papers of

 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE , HARYANA DIPLOMA, MDU HARYANA5. Using Dijkstra's Algorithm, find shortest path from P to Q

6. a) Find the minimal spanning tree for the following weighted connected graph using Kruskal's Algorithm.

b) Solve $S(K)-8 S(K-1)+16 S(K-2)=0$, where $S(2)=16, S(3)=80$.
7. a) Solve $S(K)-3 S(K-1)-4 S(K-2)=4^{K}$.
b) Find inverse of the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 4\end{array}\right]$
