Roll No.

B.Tech. (Sem. $-3^{\text {rd }}$)
 APPLIED MATHEMATICS - III
 SUBJECT CODE : AM - 201
 Paper ID : [A0303]

[Note : Please fill subject code and paper ID on OMR]
Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section - C.

Section - A

Q1)

$$
(10 \times 2=20)
$$

a) Define orthogonal functions.
b) State the Laplace transform of first and second derivatives.
c) Find the Laplace transform of $\sin 2 t \cos 3 t$.
d) State the sufficient condition for existence of Laplace transform of any function.
e) For $\mathrm{t}^{2} \frac{d^{2} x}{d t^{2}}+\mathrm{t} \frac{d x}{d t}+\mathrm{x}=0$; discuss the type of the point $t=0$.
f) Define Error function and its one property.
g) Show that the function $\frac{\sinh z}{z^{4}}$ has a pole or order 3 at $z=0$ with residue 1/6.
h) Form the partial differential equation by eliminating arbitrary constants a and b from the relation $2 \mathrm{z}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
i) Find all values of z for which $\mathrm{e}^{\mathrm{z}}=-2$.
j) State the CR - equations for a complex function.

Section - B

$$
(4 \times 5=20)
$$

Q2) Evaluate the inverse Laplace transform of $\frac{2 s^{2}-6 s+5}{s^{3-6 s^{2}+11 s-6}}$.
Q3) Find the Fourier series expansion of the function $f(x)=x^{2} ;-2 \leq x \leq 2$.
Q4) Find the one Frobenius series solution of following equation about $x^{\prime}=0$. $x y^{\prime \prime}+y^{\prime}+x y=0$.
Q5) Find the general integral of the following partial differential equation $\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{2} z \partial z}{\partial x^{2} \partial y}+4 \frac{\partial z \partial^{2} z}{\partial x \partial y^{2}}=4 \sin (2 x+y)$.
Q6) Use generating function for Legendre polynomials to derive recursion formula

$$
(n+1) \mathrm{P}_{n+1}(x)=(2 n+1) x \mathrm{P}_{n}(x)-n \mathrm{P}_{n-1}(x)
$$

Section-C

$$
(2 \times 10=20)
$$

Q7) Obtain the solution of the initial value problem using Laplace transform.
$y^{\prime \prime}+4 y^{\prime}+13 y=e^{-t}, y(0)=0, y^{\prime}(0)=2$.
Q8) Use method of separation of variables to find the solution of heat conduction equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1, t>0$, with boundary conditions $u(0, t)=u(1, t)=0$ and initial conditions $u(x, 0)=x(1-x)$.
Q9) (a) Determine poles of the function $f(z)=\frac{1}{\left(e^{z}-1\right)}$ and residue at each pole by expanding the function with Laurent's series. Hence evaluate

$$
\int_{c} f(z) d z c ;|z|=1 .
$$

(b) Find the bilinear transformation which maps the points $z=-1,0,1$ in the z - plane onto the points $w=-i, 1, i$ in the w - plane.

