Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(BME/ECE/EEE/EIE/TXE) (Sem.-3) APPLIED MATHEMATICS-III

Subject Code: AM-201
Paper ID: [A0303]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY.
- 2. Attempt any FOUR questions from SECTION-B.
- 3. Attempt any TWO questions from SECTION-C.

SECTION-A
$$(10 \times 2 = 20 \text{ Marks})$$

- 1. (a) Explain Euler's formula.
 - (b) Explain Laplace transform of derivative and integral.
 - (c) Discuss Frobenius method.
 - (d) Write down wave equation and heat conduction equation in one dimension.
 - (e) Explain Analytic function & Cauchy-Riemann equation.
 - (f) Write down the Cauchy's integral formula.
 - (g) An electrostatic field in the xy-plane is given by the potential function $\phi = 3x^2y y^3$, find the stream function.
 - (h) Expand the function $\frac{\sin z}{z-\pi}$ about $z = \pi$.
 - (i) What do you mean by singular points?
 - (j) Discuss Laplace transform of unit step function with an example.

SECTION-B
$$(4 \times 5 = 20 \text{ Marks})$$

- 2. (a) Explain Fourier series. If $f(x) = x^2$ for $-3 \le x \le 3$, write Fourier series for f(x) on [-3,3].
 - (b) If $f(x) = |\cos x|$ expand f(x) as a Fourier series in the interval $(-\pi, \pi)$

[A-12]1320/1325/1326/1327/1333

- 3. (a) Explain saw-toothed waveform with an example.
 - (b) Find the Laplace transform of $\frac{1-\cos 2t}{t}$.
- 4. (a) Solve $ty'' + 2y' + ty = \cos t$ given that y(0) = 1
 - (b) Find the Inverse Laplace transform of $[s/(s^4+4a^4)]$
- 5. (a) Solve $2x^2y'' xy' + (1-x^2)y = 0$
 - (b) Explain $J_n(x)$. Prove that $J_n(x) = (x/2n) [J_{n-1}(x) + J_{n+1}(x)]$
- 6. Use generating function for legendre polynomials to derive recursion formula

$$(n+1)P_{n+1}(x) = (2n+1) xP_n(x) - nP_{n-1}(x)$$
SECTION-C (2

SECTION-C
$$(2 \times 10 = 20 \text{ Marks})$$

(a) Form the partial differential equation from

(i)
$$(x - a)^2 + (y - b)^2 + z^2 = c^2$$

(ii)
$$F(xy + z^2, x + y + z) = 0$$

(b) Solve the following differential equations

(i)
$$Y^2p - xyq = x (z - 2y)$$

(ii)
$$\{D^2 - DD' + D' - 1\}z = \cos(x + 2y)$$

Where symbols have their usual meaning.

- 8. (a) Determine the analytic function whose real part is $e^{2x} \left(x \cos 2y - y \sin 2y \right)$
 - (b) Find the bilinear transformation which maps the points z = 1, 1, -1 into the points w = I, 0, -i
- 9. (a) Define residues of the function f(z). Also find the residues of the function

$$f(z) = \left[\frac{\sin z}{z\cos z}\right] \text{ at its pole inside the circle } |z| = 2$$

(b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{1 - 2 a \sin \theta + a^2}$$
, $0 < a < 1$