B. Tech (Sem. ${ }^{\text {rd }}$)

ENGINEERING MATHEMATICS-III
 Subject Code :BTAM-301
 Paper ID : [A1128]

Time: 3 Hrs.
Max. Marks :60
Note:- (1) Section-A is compulsory all question attempts, Consisting of Ten short answer type question carrying Two marks each.
(2) Attempt any Four question is Section-B. each question carrying Five marks.
(3) Attempt any Two question is Section-C.each question carrying Ten marks.

Q1. (a) Explain Euler's formula for finding Fourier series for the function $\mathrm{f}(\mathrm{x})$ over the $(2 \times 10=20)$ interval $-\pi \leq x \leq \pi$,
(b) Discuss whether cosecx can be expanded in the fourier series in 'the interval $-\pi \leq x \leq \pi$?
(c) State and prove First shifting theorem of finding Laplace transform.
(d) Find Laplace transform of $\mathrm{e}^{-2 t} \int_{0}^{t} \frac{\sin t}{t} \mathrm{dt}$
(e) Write down the expression for generating function of Bassel's function. $\operatorname{In}(x)$, nu +w integer.
(f) Find the solution of $x \frac{d^{2} y}{d x^{2}}+y=0$ in terms of Bessel's function.
(g) Form the Partial Differential by eliminating arbitrary function from $z=f_{1}(x) f_{2}(y)$
(h) Solve the Partial Differential equation $P \tan x-\tan y q=\tan z$, Where $p=\frac{\partial \mathrm{z}}{\partial \mathrm{x}}, \mathrm{q}=\frac{\partial \mathrm{z}}{\partial \mathrm{y}}$
(i) Show that $f(z)=\cosh z$ is analytic.
(j) Find the bilinear transformation that map the points $z=0,-i,-l$ into the points $w=i, l, 0$

SECTION-B

Q2. Find the Half range Fourier cosine series of the function

$$
\begin{aligned}
& f(x)=(x-1)^{2}, 0 \leq x \leq 1 \text { Also deduce that } \\
& \frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+----
\end{aligned}
$$

Q3. Using method of Laplace Transfom, Solve the following Differential equation

$$
\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t, \quad x(0)=1, x(\pi / 2)=-1
$$

Q4. Solve the homogeneous partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=\mathrm{e}^{2 x+3 y}+\sin (x-2 y)
$$

Q5. \quad Prove that $\frac{\mathrm{d}}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$

Q6. Find the analytic function whose imaginary part is $\sinh x \cos y$.

SECTION-C

Q7. Find series solution of the differential equation $x\left(2+x^{2}\right) \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}-\frac{\mathrm{dy}}{\mathrm{d} x}-6 x y=0$
Q8. A homogeneous rod of conducting material of length 1 cm has its ends kept at zero temperature and the temperature initially is $u(x, 0)=3 \sin \pi x$, Find the temperature $u(x, t)$ at any time.

Q9. (a) Expand $\frac{1}{(\mathrm{z}+1)(\mathrm{z}+3)}$ in Laurrent series in the interval $1<|z|<3$
(b) Evaluate $\int_{C^{z^{4}-2 z^{3}}} \frac{\mathrm{z}+1}{}$ dz where C is the circle $|\mathrm{z}|=1 / 2$

