Total No. of Pages: 02							Roll No.
Total No. of Questions: 09							•

B.TECH. BIOMEDICAL ENGG. (Sem.-3rd) ENGG.MATHEMATICS

Subject Code: AM-201 Paper ID: [A0303]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATE:

- (i) Section –A, is Compulsory. Consisting of ten questions carrying two marks each.
- (ii) Attempt any five questions from Section-B. Five marks each and students has to attempt any Four question.
- (iii) Attempt any three questions from Section-C. Carrying Ten marks each and students has to attempt any two question.

Section
$$-A$$
 $(10x2=20)$

- **Q.1.**(a) What is the Euler's formula for Fourier series expansion?
 - (b) What is one dimensional and two dimensional heat equation?
 - (c) Find cosine series for $f(x) = \sin x$, $0 < x < \pi$.
 - (d) Show that $\frac{d}{dx}[x^{\nu}J_{\nu}(x)] = x^{\nu}J_{\nu-1}(x)$
 - (e) What are Cauchy- Riemann equations for analytic function?
 - (f) What is conformal mapping?
 - (g) Define pole and residue in complex number.
 - (h) Write the formula used in Laplace transform of derivative.
 - (i) Define impulse function.
 - (j) Define odd and even function.

$$\underline{Section - B} \tag{4x5=20}$$

- Q.2. Solve $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial x}{\partial y} = 0$ by the method of separation of variables.
- **Q.3.** Find the Fourier series of $x-X^2$ from $x = \pi$ to $x = \pi$.
- **Q.4.** Find Laplace transform of e^{-3t} (2cos 5t 3sin 5t)

M-54501 Page: 1

Visit: www.brpaper.com for Previous year Question papers of B-tech, BBA, BCA, MCA, MBA, BSc-IT, Diploma, Distance Education, Msc-IT,M-Tech,PGDCA, B-Com.

Q.5. Show that
$$\frac{d|x^{-n} J_n(x)|}{dx} = -x^{-n}J_{n+1}(x)$$
.

Q.6. Evaluate
$$\oint_{Z} \frac{dz}{dz}$$
 ver c, where c is

(a)
$$|z-3i|=4$$
 (b) $|z+3i|=2$

$$\underline{Section - C} \tag{2x10=20}$$

- The wave equation $\frac{\partial^2 \mathbf{u}}{\partial t^2} + \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ representing the vibration of a string of length ℓ , fixed at **Q.7**. both ends, given that u(0, t) = 0, $u(\ell, t) = 0$, u(x, t) = f(x) and $\frac{\partial f}{\partial t} = 0$, $0 < x < \ell$. Find displacement at any point on the string.
- Find the residues of f(z) = (z-1) 4 (z-2) (z-3) at its pole and hence evaluate $\int_{0}^{z} f(z) dz$, **Q.8**.

- Express f(x) = x as a half range cosine series in (0.2).
- (b) Show that $P_4(x) = x$ as a half range cosine series $P_4(x) = \frac{1}{8}(35x4^4 30)x^2 3$. MMM Polosios Coly

M-54501 Page: 2