Roll No. \square

B.Tech. (CE/ECE/EE/EEE/ETE/Electronics \& Computer Engg.) (Sem.-3rd) (2011 Batch)
 ENGINEERING MATHEMATICS-III Subject Code : BTAM-301
 Paper ID : [A1128]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :
a. State by giving reasons whether cotx can be expanded in the fourier series in the interval $-\pi \leq x \leq \pi$?
b. Find half range sine series for x in \backslash
c. State the sufficient condition for existence of Laplace transform.
d. Find Laplace transform of $\frac{e^{-t} \sin t}{t}$.
e. Define ordinary and singular point for a second order Linear differential equation.
f. Express $2+3 x-x^{2}$ in terms of Langendre polynomials.
g. Form the Partial Differential Equation by eliminating arbitrary function from $z=x^{n} f(y / x)$.
h. Solve the Partial Differential equation $y z p-x z q=x y$, where

$$
p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}
$$

i. Show that $f(\mathrm{z})=\sin \mathrm{z}$ is ânalytic, in the finite z -plane.
j. Evaluate the integral $\int_{C} \frac{d z}{z^{2}-1}$; where C is the circle $|\mathrm{z}|=2$.

SECTION-B

2. Find Fourier series for $f(x)=\frac{\pi-x}{2}$ in the interval $(0,2 \pi)$. Also deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+$
3. Solve the following differential equation by Laplace Transform method

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t}, \quad x=2, \frac{d x}{d t}=-1 \text { at } t=0
$$

4. Solve $\frac{\partial^{2} z}{\partial x^{2}}-6 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=6 x+2 y$
5. Prove that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$
6. Find the analytic function whose imaginary part is $\cos x \cosh y$

SECTION-C

7. Find series solution of the function

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

8. A tightly stretched string haŝ its ends fixed at $x=0$ and $x=l$. At time $\mathrm{t}=0$ the string is given a shape defined by $f(x)=\mu x(l-x)$ where μ is a constant, if it is released from rest from this position, find the displacement of any point x of the string at any time $t>0$.
9. (a) If $f(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function. Find $f(\mathrm{z})$ if

$$
u+v=e^{x}(\cos \mathrm{y}-\sin \mathrm{y})
$$

(b) Show that circles are mapped on to circles under the mapping $w=\frac{1}{z}$.

