Roll No.
Total No. of Pages : 03
Total No. of Questions: 09

B.Tech. (EE / EEE / EIE / ECE / BME-2007 \& Onward Batches) (Sem.-3rd)

ENGG. MATHEMATICS / APPLIED MATHEMATICS-III

Subject Code : AM-201

Paper ID: [A0303]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
(a) If a function $f(z)=u+i v$ is analytic in a domain D , then prove that its component functions u and v are harmonic in D .
(b) Explain what do you understand by conformal mapping.
(c) Find the residuce of $f(z)=\frac{e^{z^{2}}}{(z-i)^{3}}$ at its poles.
(d) Define unit impulse function and hence find its Laplace transform.
(e) Find the Laplace transform of $f(t)=\sin ^{3} 2 t$.
(f) Prove that $\mathrm{L}\left\{\int_{0}^{t} f(u) d u\right\}=\frac{\mathrm{F}(s)}{\mathrm{S}}$, where $\mathrm{F}(\mathrm{S})=\mathrm{L}\{f(t)\}$.
(g) Obtain the complete solution of the equation

$$
2 \frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0
$$

(h) Form the partial differential equation by eliminating the arbitrary function from

$$
f\left(x^{2}+y^{2}, z-x y\right)=0
$$

(i) Show that $\frac{\mathrm{J}_{\frac{-1}{2}}^{2}}{}(x)=\sqrt{\frac{2}{\pi x}} \cos x$
(j) Find the Fourier coefficient ' a_{0} ' of $f(x)=|\sin x|$ in the interval $(-\pi, \pi)$.

SECTION-B

2. Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{l}-\pi,-\pi<x<0 \\ x, \quad 0<x<\pi\end{array}\right.$ and hence deduce that

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{5}
\end{equation*}
$$

3. (a) Define unit step function and hence find its Laplace transform.
(b) Find the inverse Laplace of $\cot ^{-1}(\mathrm{~S})$.
4. (a) Solve the linear equation :

$$
\begin{align*}
& x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y) \\
& \text { Where } p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y} \tag{3,2}
\end{align*}
$$

(b) Express $5 x^{3}+x$ in terms of Legendre polynomials.
5. Show that the function :

$$
f(z)= \begin{cases}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} & , z \neq 0 \\ 0 & , z=0\end{cases}
$$

satisfies Cauchy-Riemann equations at the origin yet $\mathrm{f}^{\prime}(0)$ dose not existo
6. (a) Evaluate $\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z$ along the straight line from $z=0$ to $z=1+i$.
(b) Find the complete solution of

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y \tag{2,3}
\end{equation*}
$$

SECTION-C

7. (a) Obtain the half range sine series for the function

$$
f(x)=\left\{\begin{array}{r}
x, 0<x<\frac{\pi}{2} \\
\pi-x, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

(b) Solve : $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t, x(0)=1, x\left(\frac{\pi}{2}\right)=-1$ by using method of Laplace Transform.
8. (a) State and prove the orthogonality property of Bessel functions.
(b) State Cauchy integral formula and use it to evaluate :

$$
\int_{\mathrm{C}} \frac{\sin z}{\left(z-\frac{\pi}{4}\right)^{3}} d z
$$

where C is $\left|z-\frac{\pi}{4}\right|=\frac{1}{2}$.
9. (a) A bar 100 cm long, with insulated sides, has its ends kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t.
(b) Construct an analytic function whose real part is $u(x, y)=2 x y+2 x$.

