Visit: www.brpaper.com for B-Tech,Diploma,BCA,BBA,MBA,MCA,Bsc-IT, Msc-IT,M-tech, Distance-Education,B-com.

Roll No..... Total No. of Questions : 09]

[Total No. of Pages : 02

Paper ID [EC404]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem.- 7th & 8th)

.OPTICAL FIBER COMMUNICATIONS (EC-404)

Time : 03 Hours Instruction to Candidates:

Maximum Marks: 60

 $(10 \times 2 = 20)$

- 1) Section A is **Compulsory**.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

a) Why optical fiber communication is preferred?

- b) Briefly explain the refractive index profile for graded index fibers.
- c) What do you understand by chirp signal?
- d) What is the concept of four wave mixing? Explain.
- e) Explain briefly the characteristics of optical materials.
- f) Define Receiver sensitivity.
- g) Define non linearity of optical fibers.
- h) What do you understand by splicing?
- i) What is meant by model noise? Explain in brief.
- j) Define Maxwell's equations.

R - 520[2058]

Section - B

$(4 \times 5 = 20)$

- **Q2**) Calculate the numerical aperture of a step index fiber having $n_1 = 1.48$ and $n_2 = 1.46$. What is the maximum entrance angle $\theta_{0,max}$ for this fiber if the outer medium is an with n = 100.
- Q3) Describe the principle and character where of dispersion shifted fibers.
- $\cdot Q4$) Describe the working and features of tunable semiconductor lasers.
- Q5) An optical transmission system is constrained to have 500 GHz channel spacing. How many wavelength channels can be utilized in the 1536-to-1556nm spectral band?
- **Q6**) What is meant by code division multiplexing? How it is related do wavelength division multiplexing.

Section - C

$(2 \times 10 = 20)$

- Q7) Design the encoder logic for an NRZ-to-optical Manchester converter. Also compare different types of digital formats.
- Q8) Describe the various types of LED structures with suitable diagrams in detail and also compare them.
- Q9) Write short notes on the following:
 - a) Source-Fiber Coupling.
 - b) Dispersive Pulse Broadening

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$