Roll No	
Total No. of Ouestions:	09

Total No. of Pages: 02

BTECH, 2014 FLUID MECHANICS PAPER CODE: ME 206 PAPER ID:[A0810]

TIME: 03 Hours

Maximum Marks: 60

Instructions to Candidates:

1) Section – A is compulsory consisting of Ten questions carrying Two marks each.

2) Section –B contains Five questions carrying Five marks each and students has to attempt any four questions

3) Section – C contains Three questions carrying Ten marks each and students has to attempt any two questions

Section- A

Q1.

- a) Define viscosity or co-efficient of viscosity or Absolute viscosity. Also explain the variation of viscosity with temperature.
- b) Draw the stress strain relationship for the following fluids and discuss the behavior of each fluid under an external shear force: an ideal fluid, a Newtonian fluid, a pseudo plastic fluid, a dilatant fluid, a Bingham fluid, and a plastic.
- c) Define velocity potential function and list out its properties. What is relation between stream function and velocity potential function?
- d) What is doublet and define the strength of doublet?
- e) If the centre of gravity of a floating body is above its Meta centre, what is the type of equilibrium of the body?
- f) Define and explain the term Hydraulic Gradient Line and Total Energy Line.
- g) Define vortex flow and differentiate between free and forced vortex flow.
- h) What are the advantages of triangular notch or weir over rectangular notch or weir?
- i) What are the advantages of venturimeter over orificemeter?
- j) What do you understand by stagnation pressure and dynamic pressure?

Section-B

- Q2. Show that the streamlines and equipotential lines form a net of mutually perpendicular lines.
- Q3. What is a free jet of liquid? Derive an expression for the path travelled by free jet issuing from a nozzle.

- What are distorted models? What are the reasons of constructing such models for rivers? Q4.
- The velocity components of fluid flow (incompressible) are O5.

$$u = x^2y$$
, $v = 2yz - xy^2$, $w = x^2 - z^2$

Show that the flow is kinematically possible.

A rectangular plane surface 1m wide and 3m deep lies in water in such a way that its Q6. plane makes an angle of 30° with the free water surface. Determine the total pressure and position of center of pressure when the upper edge is 2m below the free surface.

Section C

- Derive a relation for the torque required to rotate the cone at a constant angular velocity Q7. ω for the conical thrust bearing. For one such bearing, 120 W gets dissipated when a shaft with maximum cone radius 100 mm turns with 620 rpm over a uniform fluid layer of thickness 1.2 mm. if the semi-angle for the conical bearing is 30°, find the dynamics viscosity of the fluid.
- The angle of a reducing bend is 60° (that is deviation from initial direction to final Q8. direction). Its initial diameter is 300 mm and final diameter 150 mm and is fitted in a pipeline, carrying a discharge of 360 liters/sec. The pressure at the commencement of the bend is 2.943 bar. The friction loss in the pipe bend may be assumed as 10% of kinetic energy at exit of the bend. Determine the force exerted by the reducing bend.
- An aircraft propeller of diameter d rotating at a speed N and advancing with speed v in Q9. air of density p and viscosity µ develops a thrust V. Using Buckingham Pi- theorem, show that the thrust developed can be related through

$$\pi_1 = \phi (\pi_2, \pi_3)$$

$$\pi_{1} = T/\rho V^2 d^2$$

$$\pi_{1} = T/\rho V^2 d^2$$
, $\pi_{2} = \rho V d/\mu$ and

$$\pi_3 = dN/V$$

If the effect of Reynolds number is relatively small, establish the value of corresponding speed for testing propellers.