Roll No. Total No. of Pages: 04

Total No. of Questions: 09

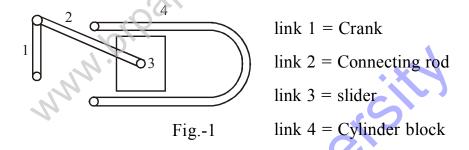
B.Tech. (AE/ME) (Sem.-3rd) B.Tech. (IE) (Sem.-3rd) (2008-09 Batch)

THEORY OF MACHINES-I

Subject Code: ME-203 Paper ID: [A0802]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:


- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

- l. Write short notes on
 - (a) What is High Pair?
 - (b) Explain why higher cannot be inverted?
 - (c) Explain Acceleration Centre of a Link.
 - (d) For the design of bearing why we use uniform pressure theory?
 - (e) Write the applications of single plate clutch.
 - (f) Write the applications of cone clutch.
 - (g) What is the Law of Belting?
 - (h) What is the advantage of using double Hooke's joint?
 - (i) What is the difference between governor and flywheel?
 - (j) Why cycloidal profile is preferred over S.H.M. profile for cams used in high speed applications?

SECTION-B

2. In Fig.-1 a slider crank chain is shown.

Which mechanism is obtained from the chain if link 3 is fixed? Explain.

3. For the configuration shown in **Fig.-2**, determine V_D by instantaneous centre method if $V_A = 635$ mm/sec with ω_2 turning counter clockwise.

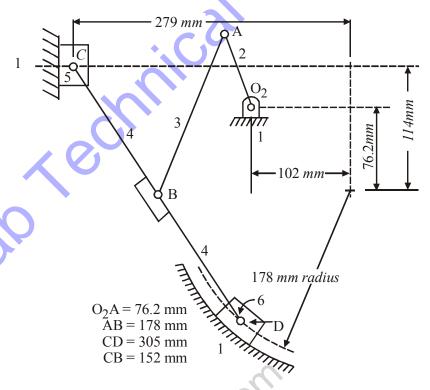


Fig.-2

4. The initial tension in a flat belt drive is 1800 N. The angle of lap on the smaller pulley is 170°. The coefficient of friction of the belt and pulley surface is 0.25. The pulley has a diameter of 0.9 m and it runs at 540 r.p.m. Determine the power that can be transmitted at the above speed. Neglect centrifugal tension.

- 5. In a turning moment diagram, the areas above and below the mean torque line taken in order are 395, 785, 140, 440, 1060 and 370 mm², having scales of 1 mm = 5 N-m and 1 mm = 10° along Y and X axis respectively. Find mass of flywheel at a radius of gyration 150 mm and maximum fluctuation of speed is limited to $\pm 1.5\%$ of mean speed which is 1800 r.p.m.
- 6. A band brake is lined with 10 wooden blocks each of which subtends an angle of 18° at the centre of the brake drum. Find the ratio between the greatest and the least tensions in the band when the brake is in action. Take $\mu = 0.36$.

SECTION-C

7. Two parallel shafts indicated in **Fig.-3** are connected by an intermediate shaft with a Hooke's joint at each end. Show that the joints should be oriented to obtain a constant angular velocity ratio between the driving and driven shafts.

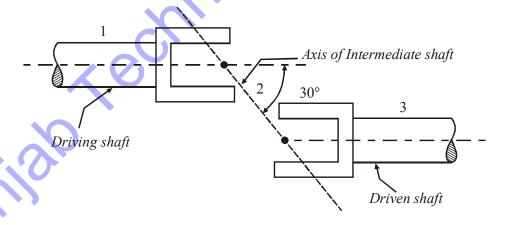


Fig.-3

The intermediate shaft of the above arrangement has a mass moment of inertia 3×10^{-3} kg-m² and is inclined at 30° to the axes of the driving and driven shafts. If the driving shaft rotates uniformly at 2400 r.p.m. with a steady input torque of 300 N-m, determine the maximum fluctuation of output torque.

8. A governor is shown in Fig.-4 schematically. The two links which carry the balls of mass m each are connected by a spring of stiffness k and has a natural length of 2e. Find out the expression for the inclination of the links with vertical when the governor rotates at a speed ω .

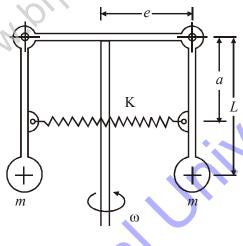


Fig.-4

9. For a cam follower system shown in Fig.-5, draw the displacement diagram for the follower and cam profile. Motion of the follower is as follows: Rise through 20° in 90° cam rotation in SHM, dwell in 90° cam rotation, S.H.M. fall in 90° cam rotation, dwell during 90° cam rotation. If N = 2500 r.p.m., find the max. angular velocity and angular acceleration of the pivoted follower.

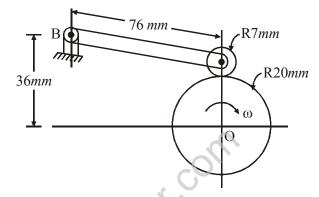


Fig.-5