B.Tech. (Sem. $-7^{\mathrm{th}} / 8^{\text {th }}$)

MECHANICAL VIBRATIONS
SUBJECT CODE : ME - 408
Paper ID : [A0841]
[Note : Pleace fill cuhioct andod in on OMR]
Time : 03 Hours
Maximum Marks : 60
Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt anỳ Two questions from Section - C.

Section - A

Q1)
a) Define longitudinal vibrations.
b) Write two uses of vibrations.
c) Define resonance.
d) If the mass of the vibrating body increases 9 times, what will be its effect on frequency.
e) Define logarithmic decrement.
f) What is the angle between inertia and spring force?
g) What is the number of nodes if the shaft is having three rotors?
h) What is a continuous system?
i) Define principal mode of vibration.
j) What is a semi definite system?

Section - B

$$
(4 \times 5=20)
$$

Q2) A body is subjected to two harmonic motions as given below:

$$
x_{1}=15 \sin \left(w t+\frac{\pi}{6}\right) \text { and } x_{2}=8 \cos (w t+\pi / 3)
$$

What harmonic motion should be given to the body to bring it to equilibrium?

Q3) Determine the natural frequency of the mass $m=15 \mathrm{~kg}$ as shown in Fig-1, assuming that the cords do not stretch and slide over the pulley rim. Assume that the pulley has no mass.

Given $\quad k_{1}=8 \times 10^{3} \mathrm{~N} / \mathrm{m}$ $\mathrm{k}_{2}=6 \times 10^{3} \mathrm{~N} / \mathrm{m}$

Q4) A door 200 cm high, 75 cm wide and 4 cm thick and weighing 35 kg is fitted with an automobile door closer. The door opens against a spring with a modulus of $1 \mathrm{~kg} \mathrm{~cm} / \mathrm{rad}$. If the door is opened 90° and released, how long will it take the door to be within 1° of closing? Assume the return spring of the door to be critically damped. Refer fig. - 2 .

Fig-2
Q5) The springs of an automobile trailer are compressed 0.1 m under its own weight. Find the critical speed when the trailer is passing over a road with a profile of sine wave whose amplitude is 80 mm and the wavelength is 14 m . Find the amplitude of vibration at a speed of $60 \mathrm{~km} / \mathrm{hr}$.

Visit: www.brpaper.com for

Q6) Find the lowest natural frequency of vibration for the system shown in Fig. -3 by Rayleigh's method.
$E=1.96 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \quad \mathrm{I}=4 \times 10^{-7} \mathrm{~m}^{+}$

Fig-3.

Section-C

$$
(2 \times 10=20)
$$

Q7) Write short note on any two of the following :
(a) Holzer's method.
(b) Vibrometer.
(c) Centrifugal pendulum vibration absorber.

Q8) Find the natural frequencies of a bar shown in Fig - 4.

Fig-4

Q9) Derive the frequency equation of torsional vibrations for a free-free shaft of length 1.

