Paper ID [C0202]

(Please fill this Paper ID in OMr Sheet)

BBA (Sem. $\mathbf{- 1}^{\text {st }}$)

BUSINESS MATHEMATICS (BB - 102)

Time : 03 Hours

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.

Section - A

Q1)
a) If A and B are two sets then show that, $\mathrm{A} \subseteq \mathrm{B} \Leftrightarrow \mathrm{B}^{\mathrm{c}} \subseteq \mathrm{A}^{\mathrm{c}}$
b) Verify that the proposition $p \vee \sim(p \wedge q)$ is a tautology.
c) If ${ }^{15} \mathrm{C}_{\mathrm{r}}:{ }^{15} \mathrm{C}_{\mathrm{r}-1}=11: 5$ find r .
d) State Binomial theorem for positive integral index.
e) If $x, 2 x+2,3 x+3,-\cdots$ are in G.P., find the fourth term.
f) Evaluate $\underset{x \rightarrow 1}{\operatorname{Lt}} \frac{x-1}{2 x^{2}-7 x+5}$.
g) What is the maximum value of $\frac{\log x}{x}$?
h) State Cramer's rule to solve simultaneous equations.
i) If a, b, c are in A.P., then prove that, $(a-c)^{2}=4\left(b^{2}-a c\right)$
j) Show that, $7 \log \frac{16}{15}+5 \log \frac{25}{24}+3 \log \frac{81}{80}=\log 2$.

Section - B

$$
(4 \times 10=40)
$$

Q2) (a) For any two sets A and B, show that, $(A \cup B)^{c}=A^{c} \cap B^{c}$.
(b) For any logical statements p, q and r, show that, $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$.

Q3) (a) Solve $3 x^{2}-4 \sqrt{3 x^{2}-4 x+1}=4 x-4$.
(b) Find the number of different permutations of the letters of the word BANANA.

Q4) (a) Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$.
(b) The $p^{\text {th }}$ term of an A.P. is a and $q^{\text {th }}$ term is b. Prove that the sum of its $(\mathrm{p}+\mathrm{q})$ terms is $\frac{p+q}{2}\left[a+b+\frac{a-b}{p-q}\right]$

Q5) (a) The $\mathrm{r}^{\text {th }}, \mathrm{s}^{\text {th }}$ and $\mathrm{t}^{\text {th }}$ terms of a G.P. are R, S and T respectively. Prove that, $\mathrm{R}^{\mathrm{s}-\mathrm{t}} \mathrm{S}^{\mathrm{t}-\mathrm{r}} \mathrm{T}^{\mathrm{r}-\mathrm{s}}=1$.
(b) Evaluate, $\operatorname{Lt}_{x \rightarrow 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}$.

Q6) (a) If $y=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left[x+\sqrt{x^{2}+a^{2}}\right]$, prove that $\frac{d y}{d x}=\sqrt{x^{2}+a^{2}}$.
(b) Find the maximum value of the product of two numbers whose sum is 12.

Q7) (a) State and prove the base changing formula of logarithms.
(b) Solve the $=\mathrm{ns}, 3 x+y+2 z=3 ; 2 x-3 y-z=-3 ; x-2 y+z=4$ by using matrix inversion method.

潮凝

