Roll No. \square Total No. of Pages : 02
Total No. of Questions : 07
BBA (Sem.-1st)

BUSINESS MATHEMATICS

Subject Code : BB-102
Paper ID : [C0202]
Time : 3 Hrs.
Max. Marks: 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write short notes on :
(a) Union of Sets.
(b) If a, b, c, d are +ve real numbers, then

$$
a>b, c>d \Rightarrow a+c>b+d .
$$

(c) Solve : $\frac{2}{x}+\frac{3}{y}=18, \frac{4}{x}+\frac{9}{y}=48$.
(d) How many permutations of the letter of word APPLE are there?
(e) Define Conditional Statement.
(f) Show that $\operatorname{Lt}_{x \rightarrow \sqrt{2}} \frac{x^{2}-2}{x-\sqrt{2}}=2 \sqrt{2}$.
(g) Find derivative of $\frac{x+2}{3+\log x}$ w.r.t. x.
(h) Evaluate $\log _{3} 81$.
(i) Find nth term of an A.P. whose sum of n terms is $3 n^{2}+n$.
(j) Give example of a matrix to show that $\mathrm{AB}=0$ even if $\mathrm{A} \neq 0$, $B \neq 0$.

SECTION-B

2. (a) Prove that $A \cup(B \backslash A)=A \cup B$.
(b) If $f(x)=2^{x}$ show that $f(x+3)-f(x-1)=\frac{15}{2} f(x)$.
3. (a) Find the $5^{\text {th }}$ term in the expansion of $\left(\frac{4 x}{3}-\frac{3}{2 x}\right)^{7}$.
(b) If $14^{\text {th }}$ term of an A.P. is 6 and $6^{\text {th }}$ term is 14 , find $95^{\text {th }}$ term.
4. Find Maximum and Minimum value of the function:

$$
f(x)=x^{3}+15 x^{2}+48 x+7
$$

5. (a) Prove that $\log \frac{75}{16}-2 \log \frac{5}{9}+\log \frac{32}{243}=\log 2$.
(b) Find the truth table for $[p \rightarrow \sim q] \wedge(p \vee r] \rightarrow q$
6. How may different words containing all the letters of the word 'SOCIETY' can be formed? Also find the number of different seven letter words formed from the letters of the/word 'SOCIETY' if each word :
(i) Begins with S and ends with Y .
(ii) To have vowels never together.
7. Use Cramer's Rule to find solution of the equations:

$$
\begin{array}{r}
2 x-y+3 z=9 \\
x+y+z=6 \\
x-y+z=2
\end{array}
$$

