Roll No.
Total No. of Questions : 07

B.B.A. (Sem.-1)
 BUSINESS MATHEMATICS
 Subject Code : BB-102
 Paper ID : [C0202]

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FOUR questions from SECTION-B.

SECTION-A

$(10 \times 2=20$ Marks $)$

1. (a) If five times the $5^{\text {th }}$ term of an A.P. is equal to six times the $6^{\text {th }}$ term, show that $11^{\text {th }}$ term is zero.
(b) Which term of the series $18-12+8 \ldots$ is $\frac{512}{729}$?
(c) A sum amounts to Rs. 8820 in two years and Rs. 9261 in three years. Find the rate of compound interest.
(d) Prove that $\log \frac{75}{16}-2 \cdot \log \frac{5}{9}+\log \frac{32}{243}=\log 2$.
(e) Find the value of ' r ' if the coefficients of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal.
(f) Find the domain of the function $\frac{1}{\sqrt{(x-1)(2-x)}}$.
(g) Evaluate the limit, $\underset{x \rightarrow 0}{\operatorname{Lt}}(1-4 x)^{\frac{3}{x}}$.
(h) Prove that $\frac{d}{d x}\left(5^{2 \log x} 5\right)=2 x, x>0$.
(i) Find the values of x for which the function $f(x)=|7 x-3|$ is maximum/ minimum.
(j) Find the values of ' m ' for which the equation $x^{2}-2 x(1+3 m)+7(3+2 m)=0$ has equal roots.

SECTION-B

2. (a) Using Cramar's Rule, solve the following system of equations for x, y and z.

$$
\begin{aligned}
& \frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\
& \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13
\end{aligned}
$$

(b) Solve the given equations for x, y and z by Gauss Elimination method.

$$
\begin{array}{r}
x+2 y-z=6 \\
3 x-y-2 z=3 \\
4 x+3 y+z=9 \tag{5,5}
\end{array}
$$

3. (a) Discuss the continuity of the function
$f(x)=\left[\begin{array}{ll}\frac{2}{5-x} & , \quad x<3 \\ 5-x & , \\ x \geq 3\end{array}\right.$ at $x=3$
(b) Sum the series $.7+.77+.777+\ldots$ to n terms.
4. (a) There are 15 points in a plane, no three of which are in a straight line excepting four, which are collinear. Find the number of (i) straight lines (ii) triangles formed by joining them.
(b) Find the term independent of ' x ' in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.
5. (a) Prove the logical expression

$$
p \rightarrow(q \wedge r)=(p \rightarrow q) \wedge(p \rightarrow r)
$$

(b) Find $\frac{d y}{d x}$ where $y=a^{x}+x^{a}+a^{a}+x^{x}-\log _{x} x$.
6. (a) $y=x^{-x}+(1+x)^{\frac{1}{x}}$, find $\frac{d y}{d x}$.
(b) Define a set.

State and prove De Morgan's Laws.
7. (a) If $y=f(x)=\frac{2 x+3}{5 x-2}$, prove that $f(y)=x$.
(b) If $x \sqrt{1+y}+y \cdot \sqrt{1+x}=0$,

Show that $\frac{d y}{d x}=-(1+x)^{-2}$.

