\square Total No. of Pages: 02
Total No. of Questions: 07
B. Tech. (Sem.- ${ }^{\text {st) }}$

MATHEMATICS-I

Subject Code: BSBC-103
Paper ID: B1110
Time: 3 Hrs.

Instruction to candidate:

1) Section - A is Compulsory.
2) Attempt any four questions from section - B
Section-A

Q1. a) Give $x=\{\{a, b\}, c\}$ amd $y=\{a, b, c\}$. Are they equal sets?
b) Prove that if R and S are symmetric then $R \cap S$ is also Symmetric
c) Using method of induction prove that

$$
1+2+3+---+n=\frac{n(n+1)}{2}
$$

d) Find the term independent of x in the expansion of

$$
\left(2 x+\frac{1}{x_{2}}\right)^{9}
$$

e) List all elements of the set
$\mathrm{A}-\{x \mid x$ is a square of an integer and $x<80\}$
f) Find first five terms of the sequence defined by the recurrence relation

$$
a_{n}=a_{n-1}+3 a_{n-2}, a_{0}=1, a_{1}=2
$$

g) Construct the truth table of $\sim p \rightarrow(q \rightarrow p)$
h) Define chromatic number of a graph G.
i) Solve the recurrence relation $a_{r}+a_{r-1}+a_{r-2}=0$
j) Find the coefficient of $x^{5} y^{8} \operatorname{in}(x+y)^{13}$
Section - B

Q2. a) Prove the distributive law:

$$
\mathrm{A} \cup(\mathrm{~B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{~B}) \cap(\mathrm{A} \cup \mathrm{C})
$$

b) Using mathematical induction, prove that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+----\frac{1}{\sqrt{n}}>\sqrt{n} \text { for } \mathrm{n} \geq 2
$$

Q3. a) Using truth tables prove that
b) Determine the validity of the argument

If 7 is less than 4 , then 7 is not a prime number

7 is not less then 4

7 is prime number
Q4. a) Solve $a_{n}+5 a_{n-1}=9, a_{0}=6$
b) Obtain the terms independent of x in the expansion of $\left(2 x-\frac{1}{x}\right)^{10}$
c) Find the fourth term from the end is the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$

Q5. a) Prove that the number of edges is a complete graph with n vertices is $\frac{\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})}{2}$
b) Find the degree of each vertex of the following graph

Q6. a) Prove that a graph G has a Hamiltonian circuit if $\mathrm{e} \geq \frac{\boldsymbol{n}^{\mathbf{2}-\mathbf{3 n}+\mathbf{6}}}{\mathbf{2}}$, Where n is the number of vertices and e the number of edges in G
b) Prove that in any graph, there are an even number of vertices if odd degree

7 (a) Solve $a_{n}-7 a_{n-1}+10 a_{n-2}=0$

$$
\text { Where } a_{0}=4, \quad a_{1}=17
$$

b) Find particular solution of

$$
a_{r}-5 a_{r-1}+6 a_{r-2}=3 r^{2}
$$

