Roll No. \square
BCA (Sem.-1 ${ }^{\text {ST }}$)
MATHEMATICS(BRIDGE COURSE)

Subject Code: BC-102
 Paper ID: B0202

Time: 3 Hrs.

Instruction to the Candidates:-

1. Section- A: is compulsory consisting of Ten question carrying two marks each.
2. Section-B contain Six question carrying Ten marks each and students has to attempt any four questions

Section -A

1.

a. Prove that $\mathrm{AC} \varnothing$ implies $\mathrm{A}=\varnothing$
b. If $A=\{1,3,5,7\}$ and $B=\{2,4 \mid$, find $A \times B$ and $B \times A$
c. If $f(\mathrm{x})=3 \mathrm{x}^{4}-5 \mathrm{x}^{2}+9$, find $\mathrm{f}\{\mathrm{x}-1)$
d. Write the middle term in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)$
e. Prove that $\mathrm{A}-\mathrm{B}=\mathrm{A} U \mathrm{~B}^{\prime}$
f. If $P(n)$ is the statement $\mathrm{n}(\mathrm{n}+1)$ is even', then what is $P(4)$
g. Solve the matrix equation $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left|\begin{array}{llll}1 & 2 & 0 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 2 & x\end{array}\right|=0$
h. Define Mean?
i. Find the co-efficient of x^{4} in the expansion of $\left(\frac{1-x}{1+x}\right)$
j. If the points $(3,-2),(x, 2),(8,8)$ and collinear, find x using determinant.

Section -B

In a town of 10,000 families it was found that 40% families buy newspaper A, 20\% families buy newspaper B and 10% families buy newspaper C, 15% families buy newspaper A and B, 3% families buy newspaper B and C and 4% families buy newspaper A and C. If 2% families buy all the three newspaper, Find the number of families which buy (i) A only (ii) B only (iii) none of A, B and C.
3. Let R be the relation on the set Z of all integers defined by $(x, y) \in R \Rightarrow x-y$ is divisible by \boldsymbol{n}

Prove that :-
(i) $\quad(x, x) \in R$ for all $x \in Z$
(ii) $\quad(x, y) \in R \Rightarrow(y, x) \in R$ for all $x, y \in Z$
(iii) $\quad(x, y) \in R$ and $(y, z) \in R: \Rightarrow(x, z) \in R$ for all $x, y, z \in Z$
4. Prove that by using Principal Mathematical Induction $2.7^{\mathrm{n}}+3.5^{\mathrm{n}}-5$ is divisible by 24 , for all $\mathrm{n} \in \mathrm{N}$
5. Without expanding the determinant, show that $\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is a factor of the $\begin{array}{lcccc} & 1+a & 1 & 1 \\ \text { following determinant } & 1 & 1+b & 1 \\ & 1 & 1 & 1+c\end{array}$
6. If $y=\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+-----$ To ∞ then show that $y^{2}+2 y-7=0$
7. From the Data given below find the arithmetic average under the Step Deviation and Shortest method.

Wages in Rs:	$1-7$	$8-14$	$15-21$	$22-28$	$29-35$
No. of Firms	3	17	12	11	7

