Roll No. \square
Total No. of Questions: 07

BCA (Sem.-1 ${ }^{\text {st }}$)
 MATHEMATICS-I
 Subject Code : BSBC-103 (2011 \& 2012 Batch)

Paper ID. [B1110]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly :
(a) Describe the set builder form of $\{1,2,3,6,9,18\}$.
(b) Let $\mathrm{A}=\{1,2,4,5\}, \mathrm{B}=\{2,3,5,6\}$ and $\mathrm{C}=\{4,5,6,7\}$. Verify $(A \cup B) \cup C=A \cup(B \cup C)$
(c) If R is the relation 'is less than' from $\mathrm{A}=\{1,2,3,4,5\}$ to $B=\{1,4,5\}$. Write down the cartesian product corresponding to R. Also find R^{-1}.
(d) Write down the truth set of $p(x): x+6<9, x \in \mathrm{~N}$.
(e) For any statement p, Prove that $\sim(\sim p) \equiv p$.
(f) Define simple graph and connected graph.
(g) Show that k_{5} is non planer.
(h) Check whether $1,3,5,6,8,8$ is a degree sequence of a graph.
(i) Give Krushal's algorithm.
(j) Define the order of a recurrence relation.

SECTION-B

2. (a) Draw the Venn diagram and verify the identity $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
(b) Show that $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$.
3. (a) Prove that $(p \wedge q) \Rightarrow p$ is a tautology.
(b) Show that the relation, 'is a multiple of ' on the set N of all natural numbers is reflexive and transitive but not symmetric.
4. (a) Prove by the principle of induction that: $n(n+1)(2 n+1)$ is divisible by 6 for all $\mathrm{n} \in \mathrm{N}$.
(b) Using the principle of mathematical induction, Prove that : $\left(2^{3 n}-1\right)$ is divisible by 7 for all $n \in \mathrm{~N}$.
5. (a) If the number of vertices of a connected graph a is n and the number of edges m and the region r, then show that $r+n-m=2$.
(b) Draw 8 regular graphs with 6 vertices. How many of them are connected?
6. (a) Draw a complete binary tree with 19 vertices.
(b) Find the coefficient of $x^{5} y^{7}$ in the expansion of $(x+3 y)^{12}$.
7. (a) Solve the recurrence relation $u_{n}=3 u_{n-1}+2, n \geq 1, u_{0}=1$.
(b) Solve the recurrence relation $2 u_{n+1}-\mathbf{u}_{\mathrm{n}}=2$.
