BC-102(N2): Mathematics (Bridge Course)

M. Marks: 60

Time: 3Hours

Note: Section A is compulsory. Attempt any 4 questions from section B.

Section - A

(2 marks each)

- 1. (i) Find A B, given that $A = \{3, 6, 12, 15, 18, 21\}$ and $B = \{4, 8, 12, 16, 20\}$.
 - (ii) Define bijective function and give one example.
 - (iii) Prove that $A (B \cup C) = (A B) \cap (A C)$.
 - (iv) Using Venn diagram, define disjoint sets.
 - (v) How many terms are there in binomial expression of $[(1-2y)^2]^7$.
 - (vi) P(n): "n(n+2) is multiple of 5", is a statement. Is this statement true for P(4)?
 - (vii) Find the values of x, y, z, if $\begin{bmatrix} x-3 & 3x-z \\ x+y+2 & x+y+z \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 5 & 6 \end{bmatrix}.$
 - (viii) Write the matrix with elements $a_{ii} = 2i + j$, i, j = 1, 2, 3.
 - (ix) Give two merits and demerits of median.
 - (x) Find the mode of the data 50, 73, 40, 44, 76, 40, 65, 35 and 40,

Section - B

(10 marks each)

- 2. Check if relation R in the set N of natural numbers, defined as $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$, is reflexive, symmetric and transitive.
- 3. (a) Let $A = \{p, q, r, s\}$, $B = \{p, q, r\}$ and $C = \{q, s\}$. Find all sets X such that (i) $X \subset B$ and $X \subset C$ (ii) $X \subset A$ and $X \not\subset B$.
 - (b) Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(x) = 2x, is one-one.
- 4. Give the definition of the following terms:
 - (i) Partitioning of set (ii) Equivalent sets (iii) Proper subset (iv) Universal set
- 5. (a) Use the method of induction, prove that $4^n 3n 1$, $n \in \mathbb{N}$ is divisible by 9.
 - (b) Find a, if 17^{th} and 18^{th} terms in the expansion of $(2+a)^{50}$ are equal.
- 6. (a) Show that $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}.$
 - (b) Verify $(AB)^{-1} = B^{-1} A^{-1}$ for the matrix A and B, where $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$.
- 7. (a) Form a frequency table for the variable values: 20, 22, 32, 20, 22, 29, 23, 27, 28, 22, 23, 32, 28, 23, 29, 20, 32, 29, 23, 27, 32, 27, 23, 29, 22, 24, 26, 23, 28.
 - (b) Find the mean of the following distribution

Class 0-7 7-14 14-21 21-28 28-35 35-42 42-49

Frequency 19 25 36 72 51 43 28