Roll No. Total No. of Pages : 02 Total No. of Questions : 07 BCA (Sem.-1st) **MATHEMATICS (BRIDGE COURSE)** Subject Code :BC-102 **Paper ID : [B0202]** Time : 3 Hrs. Max. Marks : 60 **INSTRUCTION TO CANDIDATES :** 1. SECTION-A is COMPULSORY. 2. Attempt any FOUR questions from SECTION-B SECTION-A $(10 \times 2 = 20 \text{ Marks})$ Write short notes on : (a) Define mean and median (b) Explain relation & function (c) Explain Idempotent laws (d) What do you mean by Disjoint sets? (e) Explain properties of Determinants. (f) What do you mean by Union & intersection of sets? (g) Explain De-Morgan's law. (h) What do you mean by cofactors of the determinant? (i) Define Greatest integer function. (j) Find the value of x & y when 595 $y_{v} = 1 \& y_{v}$ $(4 \times 10 = 40 \text{ Marks})$ **SECTION-B** 2. (a) Find the transpose and adjoint of the matrix A, where $A = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$

(b) Find the coefficients of x in the expansion of $(1 - 2x^3 + 3x^2)$ $(1+1/x)^8$ (5,5) [A-12]-105

- 3. Find $(x + 1)^6 + (x 1)^6$. Hence; evaluate $(\sqrt{3} + 1)^6 + (\sqrt{3} 1)^6$ (5,5)
- 4. (a) Prove by the principle of Mathematical induction that for all $n \in \mathbb{N}$

1+4+7+(3*n*-2) = $\frac{1}{2}[n (3n - 1)]$

- (b) Prove that by the principle of Mathematical induction that for all $n \in N, 3^{2n}$ when divided by 8, the remainder is always 1. (5,5)
- 5. Find the mean, median and mode of the following data relating to weight of 120 articles.

Weight in gm	0-10	10-20	20-30	30-40	40-50	50-60
No. of articles	14	17	22	26	23	18
. 19 .)		(10

What do you mean by function, kind of functions and relation. For the relation R_1 defined on R by the rule (a, b) $\varepsilon R_1 \iff 1 + ab > 0$. Prove that (a, b) $\varepsilon R_1 \ll$ (b, c) $\varepsilon R_1 \Rightarrow$ (a, c) εR_1 is not true for all a, b, c εR . (10)

7. (a) Prove that $\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$

NNNY.

(b) The coefficients of three consecutive terms in the expansion of $(1 + x)^n$, are in the ratio 1:7:42, find *n*. (5,5)