Roll No. \square Total No. of Pages : 03
Total No. of Questions: 07

BCA (Sem.-1 ${ }^{\text {st }}$)
MATHEMATICS-I
Subject Code : BSBC-103 (2011 \& 12 Batch)
Paper ID : [B1110]
Max. Marks: 60

Time : 3 Hrs.

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly :
(a) Given $\mathrm{X}=\{\{1,2\}, 3\}$ and $\mathrm{Y}=\{1,2,3\}$. Are they equal sets ?
(b) If $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}$, then is it necessary that $\mathrm{B}=\mathrm{C}$? Justify your answer.
(c) Prove that if R and S are transitive then $R \cap S$ is also transitive.
(d) Define Converse, Contrapositive and Inverse of a statement in propositional calculus.
(e) Find the truth value of $((\sim q \wedge p) \wedge q)$.
(f) Let $a_{n}=2^{n}+5\left(3^{n}\right)$, for $n=0,1,2, \ldots$. Find $a_{0}, a_{1}, a_{2}, a_{3}$ and a_{4}. Also show that $a_{2}=5 a_{1}-6 a_{0}$.
(g) Define a regular graph.
(h) Give an example of a graph which is Hamiltonian but not Eulerian.
(i) Find the generating function for the sequence $1,2,3,4, \ldots$
(j) Find the coefficient of $x^{5} y^{8}$ in $(x+y)^{13}$.

SECTION-B

2. (a) Find the relation determined by graph given and the corresponding relation matrices. Also, determine the properties of the relation given by the graph.
(b) Show that $\mathrm{A} \cup(\mathrm{B}-\mathrm{C})=(\mathrm{A} \cup \mathrm{B})-(\mathrm{C}-\mathrm{A})$
3. (a) Show that $\sim(p \vee(\sim p \wedge q)$ and $(\sim p \wedge \sim q)$ are logically equivalent.
(b) "If there was a ball game, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Therefore, there was no ball game." Show that these statements constitute a valid argument.
4. Use Mathematical induction to prove that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n} \text { for } n \geq 2
$$

5. (a) Show that the graphs G_{1} and G_{2} are isomorphic.

(b) Show that the maximum number of edges in a simple graph with n-vertices is $\frac{n(n-1)}{2}$.
6. (a) Solve the recurrence relation

$$
a_{n}=5 a_{n-1}-6 a_{n-2}, \text { for } n \geq 2 ; a_{0}=1, a_{1}=0 .
$$

(b) What is the coefficient of $x^{101} y^{99}$ in the expansion of $(2 x-3 y)^{200}$?
7. (a) Prove that in any graph, there are an even number of vertices of add degree.
(b) Define a tautology and give an example.
$[\mathrm{N}-\quad]$

