Roll No.
Total No. of Pages : 02
Total No. of Questions : 07
B.C.A. (Sem.-1)

MATHEMATICS-I
Subject Code : BSBC-103 (2011 Batch)
Paper ID : [B1110]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FOUR questions from SECTION-B.

SECTION-A
$(10 \times 2=20$ Marks $)$
(a) State the contrapositive and converse of the following implication : "I will not take the examination if I go for a movie or I have headache."
(b) Which of the following sentences are propositions and what are their truth values?
(i) $4+x=3+y$
(ii) $x+y=y+x$ for every pair of real numbers x and y.
(c) Let the universe of discourse of x consist of all real numbers. Determine the truth value of the statement $\forall x\left(x^{2}=x\right)$.
(d) List all the elements of the set
$A=\{x \mid x$ is a square of an integer and $x<100\}$
(e) Prove that for any two sets A and B
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$ where for any set $\mathrm{X}, \overline{\mathrm{X}}$ denotes the compliment of X .
(f) Let A be the $\operatorname{set}\{1,2,3,4\}$. List all ordered pairs which belong to the relation $\mathrm{R}=\{(a, b) \mid a$ divides $b\}$
(g) Find the first five terms of the sequence defined by the recurrence relation $a_{n}=a_{n-1}+3 a_{n-2}, a_{0}=1, a_{1}=2$.
(h) Find the term independent of x in the expansion of $\left(2 x+\frac{1}{x^{2}}\right)^{9}$.
(i) How many edges are there in a graph with ten vertices each of degree six.
(j) Define a complete graph K_{n} and a cycle C_{n} on n vertices.

SECTION-B $\quad(4 \times 10=40$ Marks $)$

2. (a) Let R be a relation from $\mathrm{A}=\left\{\begin{array}{llll}a_{1}, & a_{2} & \ldots, & a_{m}\end{array}\right\}$ to $\mathrm{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. What is the matrix representation of $\hat{\mathrm{R}}$?
(b) Suppose that the relations R_{1} and R_{2} on a set A are represented by the matrices.
$\mathrm{M}_{\mathrm{R}_{1}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $\mathrm{M}_{\mathrm{R}_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
What are the matrices representing $\mathrm{R}_{1} \cup \mathrm{R}_{2}$ and $\mathrm{R}_{1} \cap \mathrm{R}_{2}$?
3. (a) Show that $\sim(p \vee(\sim p \wedge q))$ and $\sim p \wedge \sim q$ are logically equivalent.
(b) Prove that $\mathrm{A} \subseteq \mathrm{B}$ is a necessary and sufficient condition for $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$.
4. (a) Is the following argument valid ? Justify your answer.
"If taxes are lowered, then income rises".

Income rises

\therefore Taxes are lowered.
(b) Prove, by using Mathematical induction, that for every positive number n, the number $2^{2 n}-1$ is divisible by 3 .
5. (a) Solve the recurrence relation:

$$
a_{n}=4 a_{n-1}+5 a_{n-2}, \quad a_{1}=2, a_{2}=6
$$

(b) Find the two middle terms in the expansion of the binomial $\left(3 x^{2}+\frac{5}{y^{2}}\right)^{11}$.
6. (a) Let a graph G have more than two vertices of odd degree. Prove that there can be no Euler path in G.
(b) What is the chromatic number of K_{n}, the complete graph on n vertices? Justify your answer.
7. Prove that a tree with n vertices has $n-1$ edges.

