							 \sim						
Roll No.							\mathbf{O}	Total	No.	of	Pages	:	02

Total No. of Questions : 07

MBA (Sem.-3rd) APPLIED OPERATIONS RESEARCH Subject Code : MB-301 (2009 to 2011 Batch)

Paper ID : [C0197]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

- l. Write briefly :
 - a. What are the steps involved in operations research?
 - b. Discuss the similarity and difference in transportation and assignment model.
 - c. What are the essential characteristics of dynamic programming?
 - d. Discuss various quantitative methods which are useful for decisionmaking under uncertainty.
 - e. State the major limitations of game theory.
 - f. Is it necessary that game should always have a saddle point? Illustrate by giving an example.
 - g. Explain the characteristics of queuing system.

MAN

- h. What are the major weaknesses of EOQ model?
- i. What is the difference between a pure strategy and a mixed strategy?
- j. Why is the transportation method used to find the optimal solution not preferred in the assignment problem?

[N-3 - 57]

SECTION-B

- 2. Discuss the importance of mathematical models by giving examples in the solution of operations research problems.
- 3. (a) Describe the matrix form of the transportation problem. Illustrate with 2 origins and 3 destinations. (6)
 - (b) Explain how transportation model is a special case of Simplex method.

(4)

		.0,			
		А	В	C	D
	А	8	46	16	40
From	В	41	8	50	40
	С	82	32	8	60
	D	40	40	36	8

4. Solve the following Travelling-Salesman problem

5. Let the value of money be assumed to be 10 per cent per year and suppose that machine A is replaced after every 3 years whereas machine B is replaced after every six years. The yearly costs of both machines are given. Determine which machine should be purchased.

Year	1	2	3	4	5	6
Machine A	1000	200	400	1000	200	400
Machine B	1700	100	200	300	400	500

6. Annual demand of an item is 6000 units. Ordering cost is Rs. 600 per order. Inventory carrying cost is 18% of the purchasing price/unit/year. The price break is given. Find the optimal order size.

Quantity	Price (Rs.)
0 to 2000	20
2000 to 4000	15
equal to or more than 4000	9

- 7. (a) What are the assumptions made in game theory? Explain the difference between a pure strategy and a mixed strategy.
 - (b) Explain two-person zero-sum game by giving suitable example.

[N-3 - 57]