APPLIED MATHEMATICS-I

$1^{\text {st }}$ Exam/Common/2455/0251/5402 May 2015

Duration 3 hrs

M.Marks: 75

Section A

Q 1
A. Choose the correct one:
I. The modulus of $\sqrt{3}+i$
a. 2
b. 1
c. -2
d. 0
II. The end point of diameter of circle are $(2,3)$ and $(6,5)$. The centre of the circle is
a. $(4,-4)$
b. $(-4,4)$
c. $(4,4)$
d. $(4,0)$
III. The value of $\operatorname{Sin} 75^{\circ}$ is
a. $\frac{\sqrt{3}+1}{2}$
b. $\frac{\sqrt{3}+1}{\sqrt{2}}$
c. $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
d. $\frac{\sqrt{2}+1}{3}$
IV. Number of terms in expansion of $(1+3 x)^{-3}$ are
a. 4
b. 5
c. 6
d. 2
V. $7^{\text {th }}$ term of the series $\frac{1}{2}+\frac{1}{3}+\frac{2}{9}+\cdots$
a. $\frac{125}{729}$
b. $\frac{32}{729}$
c. $\frac{32}{625}$
d. $\frac{25}{729}$
B. State whether the following statements are true or false:
I. The mid point of $A(-3,2)$ and $(5,4)$ is $(1,-3)$.
II. The angle -1837 lies in IV quadrant.
III. Factorial of negative integers is defined.
IV. The radius of circle $X^{2}+Y^{2}-8 X-16 Y+78=0$ is $\sqrt{2}$.
V. If $\mathrm{K}, \mathrm{K}+1, \mathrm{~K}+3$ are in GP then $\mathrm{K}=2$.
C. Fill in the blanks:
I. The value of $\cos 48^{\circ} \operatorname{Sin} 18^{\circ}-\operatorname{Sin} 48^{\circ} \operatorname{Cos} 18^{\circ}$ is equal to
II. The value of $\frac{8!}{4!}=$
III. Log of 1 to any base a(a'" 0) is always \qquad
IV. The conic is ellipse if
V. Value of $\cos \bar{\lambda}+i \sin \bar{\pi}=$ \qquad

Section B

Q2. Attempt any six questions
a. Find the value of K if $(K, 1),(5,5)$ and $(10,7)$ are collinear.
b. Sum the series $\frac{4}{3}+1+\frac{3}{4}+-----\infty$
c. Find absolute term in expansion of $\left(3 x^{2}-\frac{1}{x^{5}}\right)^{1 \mathrm{a}}$.
d. Find equation of straight line through $(4,5)$ and parallel to $2 x-3 y-5=0$.
e. Prove that $\tan 28^{\circ}=\frac{\cos 17^{\circ}-\sin 17^{\circ}}{\cos 17^{\circ}+\sin 17^{\circ}}$
f. Show that $\sin 51^{\circ}+\cos 81^{\circ}=\cos 21^{\circ}$
g. Sum the series upto n terms $8+88+888+$
h. Two vertices of triangle are $(2,3)$ and $(-3,4)$. Its centroid is $(1,3)$. Find third vertex.
i. Prove that $7 \log 10 / 9-2 \log 25 / 24+3 \log 81 / 80=\log 2$

Section C

Note: Attempt any three questions
3. Resolve into partial fraction $\frac{x+4}{(x-4)\left(x^{2}-3 x+2\right)}$
4. Prove that $4 \sin A \sin \left(60^{\circ}-A\right) \sin \left(60^{\circ}+A\right)=\sin 3 A$
5. Find equation of circle passing through $(5,7),(6,6)$ and $(2,-2)$.
6. A boy observes the angle of elevation of a mountain top to be 60° and after walking directly away from it on level ground trough 100 m , the angle of elevation is 45°. Find height of mountain and the distance between mountain and first position of the boy.
7. If x is so small that its square and higher powers are neglected.

Show that $\frac{\sqrt{9+7 x}-(16+3 x)^{1 / 4}}{(4+5 x)}=\frac{1}{4}-\frac{17 x}{384}$
8. Find equation of the straight line passing through the intersection of $x+2 y+3=0$ and $3 x+4 y+7=0$ and perpendicular to line $y-x=9$.

