\qquad

Max marks -75
Section-A

Q 1 Choose the correct answer
(1)

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\operatorname{Sin} x-x}{x}
$$

a) Does not exist
b) Zero
c) One
d) Exist and is different from 0 and 1
(2) $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos x d x$ is equal to
a) -1
b) 0
c) 1
d) 2
(3) If A is non-singular matrix then A^{-1} is
a) $\operatorname{A} \operatorname{I} \operatorname{adj} \mathrm{A}$
b) $\frac{\operatorname{Adj} \mathrm{A}}{\mathrm{IAI}}$
c) $(\operatorname{Adj} A)^{t}$
d) $\frac{(\operatorname{Adj} A)^{t}}{\mathrm{IA}^{t}}$
(4) The derivative of $\cos ^{2} x^{2}$ with respect to x is equal to
a) $2 x \sin \left(2 x^{2}\right)$
b) $2 x \cos \left(2 x^{2}\right)$
c) $-2 x \sin \left(2 x^{2}\right)$
d) $-2 x \cos \left(2 x^{2}\right)$
(5) The probability that a card drawn at random from a pack of cards is queen or heart is
a) $\frac{1}{13}$
b) $\frac{1}{2}$
c) $\frac{4}{13}$
d) $\frac{1}{4}$

Q2 State true of false

1) Mean, median and mode are measure of central tendency
2) $\operatorname{Lim} \underline{\tan 2 x}=\underline{2}$
$x \rightarrow 0 \quad \tan 3 x \quad 3$
3) $\int \log x d x=x \log x-x+c$
4) The median of data $13,14,15,16,18,20$ is 15
5) Slope of the tangent to the curve $x^{2}-2 x y+y^{2}+3 x+y+2=0$ at the point (2, -1) is $\frac{-5}{3}$
(1) $f(x)$ is an \qquad function if $(f(-x)=f(x)$ for all x
(2) Area of the region bounded by the curve $Y=x-x^{2}$ between $x=0$ and $x=1$ is \qquad
(3)
(4) Derivative is X^{10} w.r.t x^{5} is \qquad
(5) The arithmetic mean of the numbers $9,7,0, x$ and 6 is 6 then the value of x is
S.B. Roll No \qquad

Section -B

Q4. Attempt any six question
(5x6=30 Marks)
(i) If $\sin y=x \operatorname{Sin}(a+y)$. prove that $\frac{d y}{d x}=\frac{\operatorname{Sin}^{2}(a+y)}{\operatorname{Sin} a}$
(ii) Evaluate $\int \operatorname{Sin}^{4} x d x$
(iii) Prove that

X	Y
x^{2}	y^{2}
$y+z$	$z+x$

| z |
| :--- | :--- |
| z^{2} |
| $x+y$ |$|=\quad(x-y)(y-z)(z-x)(x+y+z)$

(iv) Solve $\int_{0}^{\frac{\pi}{2}} \frac{\sin x d x}{\sin x+\cos x}$
(iv) Find the dimensions of the rectangle of given area 50 sq.cm. whose perimeter is 30 cm .
(v) A problem in Mathematics is given to 3 students whose chances of solving are $1 / 2,1 / 3,1 / 4$. what is the prob. that the problem is solved?
(vi) Find the volume generated by the revolution of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about x-axis
(vii) If $Y=\sqrt{ }(\sin x)+\sqrt{ }(\sin x)+\sqrt{ } \sin x+\ldots \ldots \ldots \infty$. Prove that $(2 y-1) \frac{d y}{d x}=\cos x$
(ix) Evaluate $\int x^{2} \sin ^{2} x d x$

Section-C

Q5. Use matrix method to solve the equation
$7 x+5 y-13 z+4=0$
$9 x+2 y+11 z-37=0$
$3 x-y+z-2=0$
Or
Differentiate $(\sin x)^{\cos x}+(\cos x)^{\sin x} \quad$ w.r.t. x
Q6. Using trapezoidal rule, evaluate

$$
\begin{aligned}
& 2.5 \\
& \iint_{0}\left(16-x^{2}\right) d x \quad \text { by taking six ordinates. }
\end{aligned}
$$

Or
Find the mean deviation of the following frequency distribution

Class	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	8	10	12	9	5

Q7. Solve the differential
$(2 x-2 y+5) \frac{d y}{d x}=x-y+3$
$O r$
Show that x^{x} is minimum when $x=1$

