\qquad

APPLIED M ATHEMATICS-II
 $2^{\text {nd }}$ Exam/ Common/ 2354/June 2015

Duration 3 hrs

M. M arks: 75

Section A

Q 1

A. Choose the correct one:

I. If $x=\sin 3 t$ then acceleration at $\mathrm{t}=\frac{\pi}{2}$
a. -9
b. -3
c. 3
d. 9
II. Equation of normal to the circle $\mathrm{y}=2 x^{2}-3 x-1$ at point $(1,-2)$ is
a. $x+y+1=0$
b. $x-1=0$
C. $y-1=0$
d. $x+y-1=0$
III. $\int_{1}^{2} \log x d x=$
a. $\log (2 / e)$
b. $\log 4$
c. $\log (4 / e)$
d. $\log 2$
IV. Arithmetic mean of $7,9,5,2,4,8, x$ is given to be 7 . Then x is
a. 12
b. 14
C. 11
d. 10
V. Order of differential equation $\left(y^{\prime \prime \prime}\right)^{2}+2 y^{\prime \prime}+3 y=x$ is
a. 1
b. 2
c. 3
d. 4
B. State whether the following statements are true or false:
I. Function is said to be odd if $f(-x)=-f(x)$.
II. $\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{\theta}$ is equal to zero.
III. If $x y=a^{2}$ then $\frac{d y}{d x}=-\frac{x}{y}$.
IV. A matrix may be rectangular or square shape.
V. Integral of zero is constant.

C. Fill in the blanks:

I. If $\left|\begin{array}{lll}1 & 2 & 3 \\ k & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=0$ then $k=$
II. Inverse of matrix A is equal to \qquad
III. $\frac{d}{d x}(\cot x)=$ \qquad
IV. $\int e^{m x} d x$ is equal to \qquad
V. Probability of is zero.

Section B

Q2. Attempt any six questions
a. Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{x^{2}-1}$
b. Prove that $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=a^{2}(3 x+a)$
c. Find equation of tangent to the curve $y=9 x^{2}-12 x+7$ at $(2 / 3,3)$
d. If $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$. Find $\frac{d y}{d x}$
e. Evaluate $\int \frac{d x}{1+\sin x}$
f. Integrate $x^{2} \cot ^{-1} x$
\qquad
g. Find area bounded by the curve $y=\log x$ between x-axis and the ordinates $x=2$ and $x=3$
h. Calculate the median of the data

Class interval	$0-7$	$7-14$	$14-21$	$21-28$	$28-35$	$35-42$
frequency	8	7	14	16	9	6

i. The odds against A solving a certain problem are 8 to 6 and the odds in favour of B solving the same problem are 14 to 10 . What is probability that if both of them try, the problem would be solved?

Section C

3. Solve the equations by matrix method:

$$
\begin{aligned}
2 x-y+4 z & =18 \\
-3 x+o y+z & =-2 \\
-x+y+0 z & =0
\end{aligned}
$$

OR
Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2$
4. Differentiate w.r.t. $x \log [\log (\tan x)]$

OR

If $y=e^{m \sin ^{-1} x}$ Prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=m^{2} y$
5. Calculate mean and standard deviation for the following data:

x	25	35	45	55	65	75	85
y	3	61	132	153	140	51	2

OR

Find maximum and minimum value of the function $x^{4}+2 x^{3}-3 x^{2}-4 x+4$

