Roll No. \square
Total No. of Questions : 09

B.Tech. (2011 Onwards) (Sem.-2)

ENGINEERING MATHEMATICS - II

Subject Code : BTAM-102
Paper ID: [A1111]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
a) Check the $\left(3 x^{2}+2 \mathrm{e}^{y}\right) d x+\left(2 x e^{y}+3 y^{2}\right) d y=0$ equation for exactness.
b) Find the solution of the differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
c) It is known that $\frac{1}{x}$ is a solution of the differential equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$. Find the second linearly independent solution.
d) Write the differential equation governing the flow of current in an LCR circuit.
e) Find the general value of i^{i}.
f) Define orthogonal matrix.
g) Show that the vectors are linearly independent $(1,-1,0)(0,1,-1)(0,0,1)$.
h) State comparison test for convergence of infinite series.
i) Write Clairaut's equation.
j) State Cauchy's convergence criterion for infinite series.

SECTION-B

2. a) Find the solution of the differential equation $\left(5 x^{3}+12 x^{2}+6 y^{2}\right) d x+6 x y d y=0$.
b) Solve the differential equation $y^{\prime}+4 x y+x y^{3}=0$.
3. a) Find the general solution of the differential equation $y^{\prime \prime}-5 y^{\prime}+4 y=65 \sin 2 x$ using operator method.
b) Find the general solution of the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+13 y=30 x^{2}$.
4. An LCR circuit with battery e.m.f $E \sin p t$ is turned to resonance so that $p^{2}=\frac{1}{L C}$. Show that for small value of $\frac{R}{L}$ the current in the circuit at time t is given by $\frac{E}{2 L} \sin p t$
5. a) Solve the initial value problem $e^{x}(\cos y d x-\sin y d y)=0 y(0)=0$.
b) Find the general solution of the differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=\mathrm{e}^{-2 x}$ by the method of variation of parameters.

SECTION-C

6. a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ and hence obtain A^{-1}.
b) Using Gauss-Jordan method, find the inverse of the matrix $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4\end{array}\right]$.
7. Discuss the convergence of the following series :
a) $\sum \frac{z^{n}}{n(n+2)}$.
b) $1+\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+$ \qquad
8. a) Solve the equation $(z-1)^{3}=8$.
b) Find all values of z such that $\sin z=2$.
9. a) Find $|z|$ and $\operatorname{Arg}(z)$ when $z=\frac{(2-3 i) \overline{(1+i)}}{(2+i)}$.
b) For the set of vectors $\left\{x_{1}, x_{2}\right\}$, where $x_{1}=(1,3)^{T}, x_{2}=(4,6)^{T}$, are in R^{2}, find the matrix of linear transformation $T: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3}$ such that $T x_{1}=(-2,2,-7)^{T}$, $T x_{2}=(-2,-4,-10)^{T}$.
