Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (2011 Onwards) (Sem.–2) ENGINEERING MATHEMATICS – II Subject Code : BTAM-102 Paper ID : [A1111]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

- 1. Write briefly :
 - a) Check the $(3x^2 + 2e^y) dx + (2xe^y + 3y^2) dy = 0$ equation for exactness.
 - b) Find the solution of the differential equation y'' + 2y' + 2y = 0.
 - c) It is known that $\frac{1}{x}$ is a solution of the differential equation $x^2y'' + 4xy' + 2y = 0$. Find the second linearly independent solution.
 - d) Write the differential equation governing the flow of current in an LCR circuit.
 - e) Find the general value of i^i .
 - f) Define orthogonal matrix.
 - g) Show that the vectors are linearly independent (1, -1, 0)(0, 1, -1)(0, 0, 1).
 - h) State comparison test for convergence of infinite series.
 - i) Write Clairaut's equation.
 - j) State Cauchy's convergence criterion for infinite series.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION-B

- 2. a) Find the solution of the differential equation $(5x^3 + 12x^2 + 6y^2) dx + 6xydy = 0$.
 - b) Solve the differential equation $y' + 4xy + xy^3 = 0$.
- 3. a) Find the general solution of the differential equation $y'' 5y' + 4y = 65 \sin 2x$ using operator method.
 - b) Find the general solution of the equation $x^2 y'' 5xy' + 13y = 30x^2$.
- 4. An LCR circuit with battery e.m.f $E \sin pt$ is turned to resonance so that $p^2 = \frac{1}{LC}$. Show that for small value of $\frac{R}{L}$ the current in the circuit at time t is given by $\frac{E}{2L} \sin pt$
- 5. a) Solve the initial value problem $e^x (\cos y dx \sin y dy) = 0 y (0) = 0$.
 - b) Find the general solution of the differential equation $y'' 4y' + 4y = e^{-2x}$ by the method of variation of parameters.

SECTION-C

6. a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ and hence obtain A^{-1} .

b) Using Gauss-Jordan method, find the inverse of the matrix $A = \begin{bmatrix} 3 & -1 & 1 \end{bmatrix}$

- 7. Discuss the convergence of the following series :
 - a) $\sum \frac{z^n}{n(n+2)}$. b) $1 + \frac{x}{2} + \frac{2!}{3^2} x^2 + \frac{3!}{4^3} x^3 + \dots$
- 8. a) Solve the equation $(z-1)^3 = 8$.
 - b) Find all values of z such that $\sin z = 2$.

9. a) Find
$$|z|$$
 and $Arg(z)$ when $z = \frac{(2-3i)(1+i)}{(2+i)}$.

b) For the set of vectors $\{x_1, x_2\}$, where $x_1 = (1,3)^T$, $x_2 = (4,6)^T$, are in \mathbb{R}^2 , find the matrix of linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that $Tx_1 = (-2, 2, -7)^T$, $Tx_2 = (-2, -4, -10)^T$.