Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (2011 Onwards) (Sem.–1) ENGINEERING MATHEMATICS – I Subject Code : BTAM-101 Paper ID : [A1101]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

- I. Solve the following :
 - a) Find the length of any arc of the curve $r = a \sin^2 \frac{\theta}{2}$.

b) If
$$z = f(x, y)$$
 and $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$, prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$

c) In polar co-ordinates
$$x = r \cos \theta$$
, $y = r \sin \theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)} = r$.

- d) Using Euler's theorem, prove that if $\tan u = \frac{x^3 + y^3}{x y}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
- e) Write Taylor's series for a function of two variables.
- f) Find the value of 'a' for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} + a\hat{j} + 3\hat{k}$ are perpendicular.
- g) If $r = x\hat{i} + y\hat{j} + z\hat{k}$ and $|\vec{r}| = r$, show that $\nabla f(r) = f'(r) \nabla r$.
- h) State Stoke's theorem.
- i) Find the volume common to the two cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.
- j) Evaluate $\int_{C} (x^2 + yz) dS$, where *C* is the curve defined by x = 4y, z = 3 from $\left(2, \frac{1}{2}, 3\right)$ to (4, 1, 3).

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION-B

2. Find the radius of curvature at any point of following curves :

a)
$$x = a (\cos t + t \sin t), y = a (\sin t - t \cos t)$$
 (4)

- b) $S = a \log(\sec \psi + \tan \psi) + a \sec \psi \tan \psi$ (4)
- 3. The cardiod $r = a (1 + \cos \theta)$ revolves about the initial line. Find the volume of the solid generated. (8)
- 4. a) Find the minimum value $x^2 + y^2 + z^2$ of subject to the condition that $xyz = a^3$. (4)
 - b) Find the maximum and minimum values of $2(x^2 y^2) x^4 + y^4$. (4)
- 5. a) If $f(x, y) = \tan^{-1}(xy)$, find an approximate value of f(1.1, 0.8) using the Taylor's series linear approximation. (3)

b) Show that the function
$$f(x, y) = \begin{cases} \frac{x^2 + 2y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

(*i*) is continuous at (0, 0)

(ii) possesses partial derivatives at (0, 0).

(5)

SECTION-C

6. Find the centre of gravity of a plate whose density $\rho(x, y)$ is constant and is bounded by the curves $y = x^2$ and y = x + 2. Also, find the moment of inertia about the axis. (8)

7. a) If
$$a = \sin \theta \hat{i} + \cos \theta \hat{j} + \theta \hat{k}$$
, $b = \cos \theta \hat{i} - \sin \theta \hat{j} - 3\hat{k}$ and $c = 2\hat{i} + 3\hat{j} - \hat{k}$,
find $\frac{d}{d\theta} (\vec{a} \times (\vec{b} \times \vec{c}))$ at $\theta = 0$. (4)

- b) A particle moves along the curve $x = 3t^2$, $y = t^2 2t$ and $z = t^3$. Find its velocity and acceleration at t = 1 in the direction of $\hat{i} + \hat{j} + \hat{k}$. (4)
- 8. Verify Gauss divergence theorem for $\vec{f} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$, taken over the region bounded by the cylinder $x^2 + y^2 = 4$, z = 0 and z = 3. (8)

9. a) Evaluate the integral
$$\int_{0}^{2} \int_{0}^{\frac{y^{2}}{2}} \frac{y}{\sqrt{x^{2} + y^{2} + 1}} dx dy.$$
 (4)

b) Prove that $div(f\vec{v}) = f(div\vec{v}) + (grad f)$. \vec{v} , where f is scalar function. (4)