Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech. (2011 onwards) (Sem.-1) ENGINEERING MATHEMATICS-I

Subject Code: BTAM-101 Paper ID: [A1101]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.
- 5. Use of non programmable calculator is allowed.

SECTION-A

l. Write briefly:

(a) Find the radius of curvature at the origin for the curve:

$$y^4 + x^3 + a(x^2 + y^2) - a^2y = 0.$$

- (b) Find the area of the cardioad $r = a(1 \cos \theta)$
- (c) Find the volume of a sphere of radius 'a'.

(d) If
$$u = x \log xy$$
, where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$.

- (e) Find the equations of the tangent and normal to the surface $x^3 + y^3 + 3xyz = 3$ at (1,2,-1).
- (f) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.
- (g) Calculate the volume of the solid bounded by the planes x = 0, y = 0, x + y + z = 1 and z = 0.
- (h) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3, where t is a time. Find the components of its velocity and acceleration at t = 1 in the direction $\hat{i} + \hat{j} + 3\hat{k}$.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

- (i) Find $div \vec{F}$ and $curl \vec{F}$, where $\vec{F} = grad(x^3 + y^3 + z^3 3xyz)$.
- (i) State Stoke's theorem.

SECTION-B

- 2. Trace the folium of Descartes: $x^3 + y^3 = 3$ axy stating the salient points.
- 3. Find the moment of inertia of one loop of the lemniscates: $r^2 = a^2 \cos 2\theta$ about the initial line.
- 4. If u = f(r) and $x = r \cos \theta$, $y = r \sin \theta$, then prove that :

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$$

5. Find the maximum and minimum distances of the point A(3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$.

SECTION-C

6. Evaluate (i) $\int_{0}^{\infty} \int_{0}^{x} xe^{-\frac{x^{2}}{y}} dy dx$ by change of order of integration,

(ii)
$$\int_{-c-b-a}^{c} \int_{-a}^{b} \int_{a}^{a} (x^2 + y^2 + z^2) dx dy dz$$

- 7. (i) Find the directional derivative of $\phi(x,y,z) = xy^2 + yz^3$ at the point (2,-1, 1).
 - (ii) A vector field is given by $\vec{F} = (\sin y)\hat{i} + x(1 + \cos y)\hat{j}$. Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, z = 0.
- 8. Apply Green's theorem to evaluate : $\int_C [y(1-\sin x)dx + \cos x dy], \text{ where } C \text{ is the}$

plane triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$.

9. Verify divergence theorem for $\vec{F} = x^2\hat{i} + z\hat{j} + yz\hat{k}$ taken over the curve bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.