Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(CSE / IT) (Sem.-3) DIGITAL CIRCUITS AND LOGIC DESIGN Subject Code : CS-205 Paper ID : [A0453]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

- 1. Write briefly :
 - a) Define the term Decoder.
 - b) Convert SOP expression (AB+BC'+C'D) in to its equivalent POS form.
 - c) Represent (-11) in 2's complement form using 5 bits.
 - d) What is difference between multiplexer and demultiplexer?
 - e) What do you understand by Shift Registers?
 - f) Name any two Analog to Digital Converters.
 - g) What is the reason behind using gray code in K-Map?
 - h) Subtract $(1101)_2$ from $(1001)_2$ using 2's complement subtraction.
 - i) What is the state of JK flipflop when both the inputs are high (i.e. when J = 1. K = 1)?
 - j) Differentiate between synchronous and asynchronous counters.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION B

- Reduce the following expression using K-map method and specify the Selective Prime Implicant (SPI), Redundant Prime Implicant (RPI), and Essential Prime Implicant (EPI).
 F (A, B, C, D) = ∑m (1, 5, 6, 7, 11, 12, 13, 15)
- 3. What is excitation table? Design JK flip flop from SR flip flop by the use of excitation table.
- 4. Convert following number system
 - a) $(12.25)_{10} = (?)_2$
 - b) $(10101.1101)_2 = (?)_{16}$
 - c) $(125)_8 = (?)_{10}$
 - d) $(34)_{16} = (?)_2$
 - e) $(67.2)_8 = (?)_2$
 - 5. Design 3-bit synchronous counter using JK flip flop. Also draw the counting sequence for the same.

6. What is the application of digital to analog converter? Explain R/2R ladder digital to Analog Converter with neat diagram.

SECTION C

7. What is programmable logic array? Implement programmable logic array (PLA) for given functions:

F1 = AB' + AC + A'BC'

F2 = AC + BC

- 8. a) Design a 3 bit Gray to Binary code converter.
 - b) Design a 3 bit even parity generator and show its truth table.
- 9. a) Distinguish between a half adder and a full adder with the help of truth table and logic diagram.
 - b) With the help of logic diagram and truth table, explain an octal to binary encoder.