Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No.

Total No. of Questions : 09

B.Tech.(3DAnimation & Graphics) (2012 Onwards) B.Tech.(CSE/IT) (2012 Batch) (Sem.–3) MATHEMATICS – III

Subject Code : BTAM-302

Paper ID : [A2143]

Time: 3 Hrs.

Max. Marks : 60

Total No. of Pages : 02

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. Write briefly :
 - a) Find Laplace transform of $\sin h \frac{t}{2} \sin \frac{\sqrt{3}t}{2}$.
 - b) If $L^{-1} \{F(s)\} = f(t)$ then show that $L^{-1} \left\{ \frac{1}{s} F(s) \right\} = \int_{0}^{t} f(x) dx$.
 - c) Form the partial differential equation by eliminating the functions from the relation z = yf(x) + xg(y).
 - d) Solve the given linear PDE $\sqrt{p} + \sqrt{q} = x + y$.
 - e) State the necessary condition for a complex function to be analytic.
 - f) Determine a, b, c, d such that the function

 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ is analytic.

- g) Define diagonally dominant system of linear equations with example.
- h) For the given ODE $y' = y \frac{2x}{y}$, y(0) = 1 find y(0.1) using Euler's method.
- i) If the sum of mean and variance of a binomial distribution is 4.8 for five trails, find the distribution.
- j) Show that in a Poisson distribution with unit mean, mean deviation about mean is 2/e times the standard deviation.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION-B

2. Obtain Fourier series of the function $f(x) = x^2$, $-\pi \le x \le \pi$ and hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$.

3. Using Laplace transform evaluate
$$\int_{0}^{\infty} e^{-t} \frac{\sin^2 t}{t} dt$$
.

- 4. Solve the linear PDE $(x^2 y^2 z^2)p + 2xyq = 2xz$.
- 5. Prove that $u = x^2 y^2 2xy 2x + 3y$ is harmonic and find a function v(x, y) such that the function f(z) = u + iv is analytic.
- 6. Solve the given system of linear equations using Gauss-Seidal method

$$2x + 17y + 4z = 35$$
, $28x - 4y - z = 32$, $x + 3y + 10 = 24$.

SECTION-C

- 7. i) Let f (t) be piecewise continuous on [0, ∞), be of exponential order and periodic T. Then L[f(t)] = 1/(1-e^{-sT}) ∫_0^T e^{-st} f(t)dt, s > 0.
 ii) Solve (2D² 5DD' + 2D'²)z = 5 sin (2x + y)
- 8. i) By using Power method calculate the dominant eigen values and corresponding Eigen value of $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.
 - ii) Given y' = y x, y(0) = 2, find y(0.1) and y(0.2) using Runge-Kutta method of fourth order.
- 9. i) In a Normal distribution, 7% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution?
 - ii) A manufacturer claims that only 4% of his products supplied by him are defective. A random sample of 600 products contains 36 defectives. Test the claim of the manufacturer.