Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (3D Animation & Graphics) (2012 Onwards) B.Tech. (CSE)/(IT) (2012 Batch)

(Sem.-3)

MATHEMATICS-III

Subject Code : BTAM-302

Paper ID : [A2143]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

- 1. Write briefly :
 - (a) Define periodic function. Give an example of a function which is not periodic.
 - (b) Write the sufficient conditions for the existence of Laplace transform.
 - (c) Find the Laplace transform of cos (*at*).
 - (d) Obtain a partial differential equation that governs the family of surfaces $z = (x - \alpha)^2 + (y - \beta)^2$.
 - (e) Define linear partial differential equation and give an example of a partial differential equation which is not linear.
 - (f) Write the sufficient conditions for a function of complex variable to be analytic.
 - (g) Gauss elimination method is used to solve which equations?
 - (h) Write the fourth-order Runge-Kutta method to solve initial value problems of ordinary differential equations.
 - (i) The number of emergency admissions each day to a hospital is found to have Poisson distribution with mean 4. Find the probability that on a particular day there will be no emergency admissions.
 - (j) Write one application of F-distribution.

[M - 70808]

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

SECTION-B

2. Find the Fourier cosine series of the function

$$f(x) = \begin{cases} x^2, & 0 \le x \le 2, \\ 4, & 2 \le x \le 4. \end{cases}$$

3. State and prove linearity property of Laplace transform and use it to find the Laplace transform of $\sinh(3t)$ and $\cosh(4t)$.

4. Solve :
$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$
, where $p = \frac{\partial z}{\partial x}$; $q = \frac{\partial z}{\partial y}$.

- 5. Two players A and B play tennis games. Their chances of winning a game are in the ratio 3 : 2 respectively. Find A's chance of winning at least two games out of four games played.
- 6. Two random samples of sizes 9 and 7 gave the sum of squares of deviations from their respective means as 175 and 95 respectively. Can they be regarded as drawn from normal populations with the same variance ?

SECTION-C

- 7. If f(z) = u + iv is an analytic function of z = x + iy and $u + v = (x + y)(2 - 4xy + x^2 + y^2)$, then find u, v and the corresponding analytic function f(z).
- 8. Find the solution of the system of equations

$$45x_1 + 2x_2 + 3x_3 = 58$$

- 3x₁ + 22x₂ + 2x₃ = 47
5x₁ + x₂ + 20x₃ = 67

correct to three decimal places using the Gauss-Seidel iteration method.

9. Solve the initial value problem $\frac{dy}{dx} = -2xy^2$; y(0) = 1 with the step size h = 0.2on the interval [0, 0.6] using the classical fourth-order Runge-Kutta method. The exact solution of the problem is $y(x) = \frac{1}{1+x^2}$. Find the absolute errors at each step.

step.

[M - 70808]