Roll No.

Total No. of Pages : 02
Total No. of Questions : 09

B.Tech. (3D Animation \& Graphics) (2012 Onwards) B.Tech. (CSE)/(IT) (2012 Batch)

(Sem.-3)
MATHEMATICS-III
Subject Code : BTAM-302
Paper ID : [A2143]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :
(a) Define periodic function. Give an example of a function which is not periodic.
(b) Write the sufficient conditions for the existence of Laplace transform.
(c) Find the Laplace transform of $\cos (a t)$.
(d) Obtain a partial differential equation that governs the family of surfaces $z=(x-\alpha)^{2}+(y-\beta)^{2}$.
(e) Define linear partial differential equation and give an example of a partial differential equation which is not linear.
(f) Write the sufficient conditions for a function of complex variable to be analytic.
(g) Gauss elimination method is used to solve which equations?
(h) Write the fourth-order Runge-Kutta method to solve initial value problems of ordinary differential equations.
(i) The number of emergency admissions each day to a hospital is found to have Poisson distribution with mean 4 . Find the probability that on a particular day there will be no emergency admissions.
(j) Write one application of F-distribution.

SECTION-B

2. Find the Fourier cosine series of the function

$$
f(x)=\left\{\begin{array}{rc}
x^{2}, & 0 \leq x \leq 2 \\
4, & 2 \leq x \leq 4
\end{array}\right.
$$

3. State and prove linearity property of Laplace transform and use it to find the Laplace transform of $\sinh (3 t)$ and $\cosh (4 t)$.
4. Solve : $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$, where $p=\frac{\partial z}{\partial x} ; q=\frac{\partial z}{\partial y}$.
5. Two players A and B play tennis games. Their chances of winning a game are in the ratio $3: 2$ respectively. Find A's chance of winning at least two games out of four games played.
6. Two random samples of sizes 9 and 7 gave the sum of squares of deviations from their respective means as 175 and 95 respectively. Can they be regarded as drawn from normal populations with the same variance?

SECTION-C

7. If $f(z)=u+i v$ is an analytic function of $z=x+i y$ and
$u+v=(x+y)\left(2-4 x y+x^{2}+y^{2}\right)$, then find u, v and the corresponding analytic function $f(z)$.
8. Find the solution of the system of equations

$$
\begin{aligned}
45 x_{1}+2 x_{2}+3 x_{3} & =58 \\
-3 x_{1}+22 x_{2}+2 x_{3} & =47 \\
5 x_{1}+x_{2}+20 x_{3} & =67
\end{aligned}
$$

correct to three decimal places using the Gauss-Seidel iteration method.
9. Solve the initial value problem $\frac{d y}{d x}=-2 x y^{2} ; y(0)=1$ with the step size $h=0.2$ on the interval $[0,0.6]$ using the classical fourth-order Runge-Kutta method. The exact solution of the problem is $y(x)=\frac{1}{1+x^{2}}$. Find the absolute errors at each step.

