Roll No. \square Total No. of Pages : 03
Total No. of Questions: 09

$$
\begin{gathered}
\text { B.Tech.(CSE) / (IT) (2011 Batch) } \\
\text { MATHEMATICS-III } \\
\text { Subject Code : BTCS-402 } \\
\text { Paper ID : [A1184] }
\end{gathered}
$$

(Sem.-4)

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :
(a) Find the Fourier cosine series for the function $f(x)=1,0 \leq x \leq 2$.
(b) Define Laplace transformation. State sufficient conditions for the existence of Laplace transformation of any function $f(t)$.
(c) Given show that $L\left(2 \sqrt{\frac{t}{\pi}}\right)=\frac{1}{s^{\frac{3}{2}}}$, show that $L\left(\sqrt{\frac{1}{\pi t}}\right)=\frac{1}{\sqrt{s}}$.
(d) Form the partial differential equation from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(e) Solve: $2 \frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0$
(f) Using C-R equations prove that $f(z)=|z|^{2}$ is not analytic at any point.
(g) Explain the difference between direct and iterative methods for solving simultaneous linear equations. Mention the different available methods for solving them.
(h) Explain geometrically the difference between Euler' and modified Euler's method.
(i) Write down the different properties of the normal distribution.
(j) Write down any three properties of t -distribution.

SECTION-B

2. Expand the function $f(x)=x \sin x$ as a Fourier series in the interval $[-\pi, \pi]$.

Also deduce that : $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\ldots \ldots \ldots .=\frac{1}{4}(\pi-2)$
3. Find the Laplace transforms of $(i) f(t)=\frac{\cos a t-\cos b t}{t}$, (ii) $f(t)=t e^{-a t} \cos 3 t$
4. Find the largest eigen-value and the corresponding eigen-vector for the equations: $(2-\lambda) x_{1}-x_{2}=0,-x_{1}+(2-\lambda) x_{2}-x_{3}=0,-x_{2}+(2-\lambda) x_{3}=0$ by Rayleigh power method.
5. Using Runge-Kutta method of fourth-order, solve :

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} \text { with } y(0)=1 \text { at } x=0.2,0.4
$$

6. The probability that a pen manufactured by a company will be defective is $\frac{1}{10}$. If 2 such pens are manufactured, find the probability that (i) exactly two will be defected, (ii) at least two will be defective, (iii) none will be defective.

SECTION-C

7. (a) Show that the function $v(x, y)=\ln \left(x^{2}+y^{2}\right)+x-2 y$ is harmonic. Find its conjugate harmonic function $u(x, y)$ and the corresponding analytic function $f(z)$.
(b) Find the general solution of the partial differential equation :

$$
p x\left(z-2 y^{2}\right) p=(z-q y)\left(z^{2}-y^{2}-2 x^{3}\right)
$$

Visit www.brpaper.com for downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com
8. (a) If $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, prove that (i) $\tan \mathrm{h} \frac{u}{2}=\tan \frac{\theta}{2}$, (ii) $\theta=-i \log \tan$

$$
\left(\frac{\pi}{4}+i \frac{u}{2}\right) .
$$

(b) Solve the system of equations : $5 x-2 y+z=4,7 x+y-5 z=8,3 x+7 y+4 z=10$ using Gauss elimination method with partial pivoting.
9. The theory predicts the proportion of beans in four groups, $G_{1}, G_{2}, G_{3}, G_{4}$ should be in the ratio 9:3:3:1. In an experiment with 1600 beans, the number in the four groups were $882,313,287$ and 118 . Does the experiment result support the theory?

