Roll No. \square
Total No. of Questions : 09
B.Tech.(CE)/(ECE)/(EE)/(Electrical \& Electronics)/
(Electronics \& Computer Engg.)/(Electronics \& Electrical)/(ETE)
(2011 Onwards)
B.Tech.(Electrical Engg. \& Industrial Control) (2012 Onwards)
(Electronics Engg.) (2012 Onwards)
(Sem.-3)
ENGINEERING MATHEMATICS - III
Subject Code : BTAM-301
Paper ID : [A1128]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Evaluate, $\int \frac{e^{z}}{z-2} d z$ along the circle,$|z|=3$.
b) Under what condition or conditions the general linear partial differential equation of second order is parabolic.
c) State the three possible solutions of the one dimensional heat equation, $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
d) Write the formulae for finding the half range sine series for the function $f(x)$ in the interval ($0, \mathrm{c}$).
e) Find, L $\left(\frac{e^{4 t} \cos 3 t}{t}\right)$.
f) Expand e^{-z} in Taylor's series about the point $z=0$.
g) Form a partial differential equation from $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
h) Write the solution of the differential equation,
$\mathrm{P}_{0}(x) y^{\prime \prime}+\mathrm{P}_{1}(x) y^{\prime}+\mathrm{P}_{2}(x) y=0$, when the roots of the indicial equation are distinct and differ by an integer.
i) What are Dirichlet's conditions for the expansion of $f(x)$ as a Fourier series in $(-\pi, \pi)$.
j) What are the Bessel's functions of the first and second kind?

SECTION-B

2. Solve $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}$ where $y(0)=1$ and $y^{\prime}(0)=1$ by using Laplace transform method.
3. Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in Laurent's series yalid for the regions,
(i) $1<|z|<2$
(ii) $0<|z-1|<1$.
4. Find the Fourier series of, $f(x)=x$ for $0 \leq x \leq \pi$.

$$
=2 \pi-x \text { for } \pi \leq x \leq 2 \pi .
$$

Hence find the value of the series, $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$
5. With usual notation, prove that, $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
6. Solve the partial different equation, $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.

SECTION-C

7. Use the concept of residues to evaluate, $\int_{0}^{2 \pi} \frac{d x}{2+\cos x}$.
8. Find series solution of the function $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$
9. Solve in series, $8 x^{2} \frac{d^{2} y}{d x^{2}}+10 x \frac{d y}{d x}-(1+x) y=0$.
